
- •Научные методы познания окружающего мира; роль эксперимента и теории в процессе познания природы; моделирование явлений и объектов природы.
- •Электрическая ёмкость: электроёмкость конденсатора; энергия электрического поля.
- •Задача на применение законов сохранения импульса.
- •Билет 2
- •Научные гипотезы; физические законы и теории, границы их применимости.
- •Электрический ток. Последовательное и параллельное соединения проводников. Электродвижущая сила (эдс). Закон Ома для полной электрической цепи.
- •3.Экспериментальное задание: «Измерение длины световой волны с помощью дифракционной решетки».
- •Механическое движение и его относительность; уравнения прямолинейного равноускоренного движения.
- •Электрический ток в газах: несамостоятельный разряд в газах; самостоятельный электрический разряд; виды самостоятельного разряда; плазма.
- •3.Задача на применение уравнения состояния идеального газа
- •Движение по окружности с постоянной по модулю скоростью; период и частота; центростремительное ускорение.
- •2.Электрический ток в растворах и расплавах электролитов: закон Фарадея; определение заряда одновалентного иона; технические применения электролиза.
- •Задача на применение газовых законов.
- •Первый закон Ньютона: инерциальная система отсчёта.
- •Экспериментальное задание: «Измерение влажности воздуха с помощью психрометра».
- •Второй закон Ньютона: понятие о массе и силе, принцип суперпозиции сил; формулировка второго закона Ньютона; классический принцип относительности.
- •Магнитное поле: понятие о магнитном поле; магнитная индукция; линии магнитной индукции, магнитный поток; движение заряженных частиц в однородном магнитном поле.
- •Экспериментальное задание: «Построение графика зависимости температуры от времени остывания воды».
- •Третий закон Ньютона: формулировка; характеристика сил действия и противодействия: модуль, направление, точка приложения, природа.
- •Закон электромагнитной индукция Фарадея; правило Ленца; явление самоиндукции; индуктивность; энергия магнитного поля.
- •Экспериментальное задание: «Исследование зависимости периода и частоты свободных колебаний математического маятника от длинны нити».
- •Колебательный контур. Свободные электромагнитные колебания: затухание свободных колебаний; период электромагнитных колебаний.
- •Экспериментальное задание: «Определение показателя преломления пластмассы».
- •1. Закон всемирного тяготения. Сила тяжести, вес и невесомость.
- •Автоколебания: автоколебательная система; автоколебательный генератор незатухающих электромагнитных колебаний.
- •Силы упругости: природа сил упругости; виды упругих деформаций; закон Гука.
- •3.Задача на применение закона радиоактивного распада
- •Силы трения: природа сил трения; коэффициент трения скольжения; закон сухого трения; трение покоя; учёт и использование трения в быту и технике.
- •Трансформатор: принцип трансформации переменного тока; устройство трансформатора; холостой ход; режим нагрузки; передача электрической энергии.
- •3.Экспериментальное задание: «Исследование последовательного соединения проводников».
- •Равновесие твёрдых тел: момент силы; условия равновесия твёрдого тела; устойчивость тел; виды равновесия; принцип минимума потенциальной энергии.
- •2.Электромагнитное поле. Открытие электромагнитных волн: гипотеза Максвелла; экспериментальное; опыты Герца.
- •Экспериментальное задание: «Измерение эдс и внутреннего сопротивления источника тока2.
- •Механическая работа. Мощность. Энергия: кинетическая энергия; потенциальная энергия тела в однородном поле тяготения и энергия упруго деформированного тела; закон сохранения энергии.
- •Задача на применение закона сохранения энергии.
- •Билет 14
- •.1.Закон Паскаля; закон Архимеда; условия плавания тел.
- •Свет как электромагнитная волна. Скорость света. Интерференция света: опыт Юнга; цвета тонких плёнок.
- •Задача на расчет работы и мощности тока.
- •2. Дифракция света: явление дифракции света; явления, наблюдаемые при пропускании света через отверстия малых размеров; дифракция на малом отверстии и от круглого экрана. Дифракционная решётка.
- •Задача на движение заряженной частицы в магнитном поле
- •Гипотеза Планка о квантах; фотоэффект; опыты а.Г.Столетова; уравнение Эйнштейна для фотоэффекта; фотон.
- •Задача на применение закона электромагнитной индукции
- •Законы отражения и преломления света; полное внутреннее отражение; линзы; формула тонкой линзы; оптические приборы.
- •Задача по теме «Вес движущегося тела».
- •Постулаты специальной теории относительности (сто). Полная энергия. Энергия покоя. Релятивистский импульс.
- •Задача на применение закона всемирного тяготения
- •Билет 19
- •Модель строения жидкостей. Насыщенные и ненасыщенные пары; зависимость давления насыщенного пара от температуры; кипение. Влажность воздуха; точка росы, гигрометр, психрометр.
- •Дисперсия и поглощение света; спектроскоп и спектрограф. Различные виды электромагнитных излучений и их практическое применение. Дисперсия
- •Задача по теме «Кинематика»
- •Билет 20
- •Опыт Резерфорда; ядерная модель атома; квантовые постулаты Бора; гипотеза де Бройля о волновых свойствах частиц; дифракция электронов; лазеры.
- •Экспериментальное задание: «Измерение модуля упругости резины».
- •Модели строения атомного ядра; ядерные силы; нуклонная модель ядра; энергия связи ядра; ядерные спектры; ядерные реакции.
- •1. Тепловые машины: основные части и принципы действия тепловых машин; коэффициент полезного действия тепловой машины и пути его повышения; проблемы энергетики и охрана окружающей среды.
- •2. Радиоактивность; радиоактивные излучения; закон радиоактивного распада.
- •Задача на расчёт параметров колебательного контура
- •Необратимость тепловых процессов; второй закон термодинамики и его статистическое истолкование.
- •3. Экспериментальное задание: «Измерение ускорения свободного падения с помощью математического маятника».
- •Солнечная система. Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд.
- •Малые тела Солнечной системы.
- •2. Виды звезд.
- •3. Взрывы и эволюция звезд.
- •Задача на применение первого закона термодинамики.
- •Наша Галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной. Применимость законов физики для объяснения природы космических объектов.
- •5. Будущее Вселенной.
- •Экспериментальное задание: «Исследование параллельного соединения проводников».
- •«Красное смещение» в спектрах галактик. Современные взгляды на строение и эволюцию Вселенной.
- •3. Задача по теме «Кинематика»
Модели строения атомного ядра; ядерные силы; нуклонная модель ядра; энергия связи ядра; ядерные спектры; ядерные реакции.
. Протонно-нейтронная модель атома.
В 1932 г. российский физик Д. Д. Иваненко и немецкий физик В. Гейзенберг предложили протонно-нейтронную модель ядра. Ядро атома любого химического элемента состоит из двух видов элементарных частиц: протонов и нейтронов. Число протонов в ядре равно атомному номеру элемента 2, в периодической системе элементов и называется зарядовым числом. Число нейтронов в ядре обозначают N. Сумма числа протонов Z и числа нейтронов N в ядре называют массовым числом и обозначают буквой А: А = Z+ N. В качестве единицы массы в атомной и ядерной физике используется атомная единица массы (а. е. м.). Атомная единица массы равна 1/12 массы атома углерода атомной массой 12. 1 а. е. м. = 1,66057 *10-27 кг).
Протон и нейтрон — это два так называемых зарядовых состояния одной и той же частицы — нуклона (от латинского — ядро). Протон — нуклон в заряженных частиц, нейтрон — в нейтральном. Атомные ядра состоят из нуклонов.
Изотопы (от греческого- одинаковый, — место) представляют собой ядра с одним и тем же значением Z, но различными массовыми числами А, т. е. с различным числом нейтронов N.
Например, водород имеет три изотопа:11 Н — протий (в ядре только один протон),21 Н— дейтерий (в ядре — протон и нейтрон), 31Н — тритий (в ядре — протон и два нейтрона).
Ядерные силы –это силы действующие между нуклонами в ядре.
Свойства ядерных сил:
1. Взаимодействия ядерных частиц часто называют сильными взаимодействиями.
Ядерные силы примерно в 100 раз превосходят электрические силы. Это самые мощные силы из всех.
2. Ядерные силы вплоть до некоторого расстояния являются силами притяжения, но начиная с некоторого расстояния между нуклонами, силы притяжения заменяются силами отталкивания.
3. Ядерные силы имеют короткодействующий характер. Ядерные силы заметно проявляются лишь на расстояниях, равных по порядку величины размерам ядра (Ю-12 — 10~13 см). Ядерные силы — это, так сказать, «богатырь с очень короткими руками».
В ядерной физике вводится особая единица длины — ферми. 1 фм = 10~16 м.
Нейтрон начинает притягиваться к протону, находясь от него на расстоянии, меньшем 2 фм. На расстоянии, меньшем 0,4 фм, действуют мощные силы отталкивания между ними. При расстоянии между нуклонами всего 4,2 фм ядерные силы пренебрежимо малы.
Ядерными реакциями называют изменения атомных ядер при взаимодействии их с элементарными частицами или друг с другом.
Атомные ядра при взаимодействиях испытывают превращения, которые сопровождаются увеличением или уменьшением кинетической энергии участвующих в них частиц
Ядерные реакции происходят, когда частицы вплотную приближаются к ядру и попадают в сферу действия ядерных сил. Одноименно заряженные частицы отталкиваются друг от друга. Поэтому сближение положительно заряженных частиц с ядрами (или ядер друг с другом) возможно, если этим частицам (или ядрам) сообщена большая кинетическая энергия (например, протонам, ядрам дейтерия — дейтронам, а-частицам и другим ядрам с помощью ускорителей элементарных частиц ионов).
Первая
ядерная реакция на быстрых протонах
была осуществлена в 1932 г. Удалось
расщепить литий на а-частицы:
Энергетический выход ядерных реакций.
В описанной выше ядерной реакции кинетическая энергия двух образующихся ядер гелия оказалась больше кинетической энергии вступавшего в реакцию протона на 7,3 МэВ. Превращение ядер сопровождается изменением их внутренней энергии (энергия связи Есв ).
,
где тр,
тп,
с-
постоянные величины
В этой реакции удельная энергия связи в ядрах гелия больше удельной энергии связи в ядре лития. Поэтому часть внутренней энергии ядра лития превращается в кинетическую энергию разлетающихся а-частиц.
Изменение энергии связи ядер означает, что суммарная энергия покоя участвующих в реакциях частиц и ядер не остается неизменной. Ведь энергия покоя ядра Мя согласно формуле непосредственно выражается через энергию связи. В соответствии с законом сохранения энергии изменение кинетической энергии в процессе распада равно изменению энергии покоя участвующих в реакции ядер и частиц.
Энергетическим выходом ядерной реакции называется разность энергий покоя ядер и частиц до реакции и после реакции. Согласно сказанному ранее энергетический выход ядерной реакции равен также изменению кинетической энергии частиц — участников реакции.
Ядерные реакции на нейтронах.
Открытие нейтрона было поворотным пунктом в исследовании ядерных реакций. Так как нейтроны лишены заряда, то они беспрепятственно проникают в атомные ядра и вызывают их изменения.
Например,
наблюдается следующая реакция:
Энрико Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми, но и медленными нейтронами.
Реакции, в которые вступают атомные ядра, очень разнообразны. Нейтроны не отталкиваются ядрами и поэтому особенно эффективно вызывают превращения ядер.
Задача по теме «Основное уравнение МКТ.
Билет 22