
- •Научные методы познания окружающего мира; роль эксперимента и теории в процессе познания природы; моделирование явлений и объектов природы.
- •Электрическая ёмкость: электроёмкость конденсатора; энергия электрического поля.
- •Задача на применение законов сохранения импульса.
- •Билет 2
- •Научные гипотезы; физические законы и теории, границы их применимости.
- •Электрический ток. Последовательное и параллельное соединения проводников. Электродвижущая сила (эдс). Закон Ома для полной электрической цепи.
- •3.Экспериментальное задание: «Измерение длины световой волны с помощью дифракционной решетки».
- •Механическое движение и его относительность; уравнения прямолинейного равноускоренного движения.
- •Электрический ток в газах: несамостоятельный разряд в газах; самостоятельный электрический разряд; виды самостоятельного разряда; плазма.
- •3.Задача на применение уравнения состояния идеального газа
- •Движение по окружности с постоянной по модулю скоростью; период и частота; центростремительное ускорение.
- •2.Электрический ток в растворах и расплавах электролитов: закон Фарадея; определение заряда одновалентного иона; технические применения электролиза.
- •Задача на применение газовых законов.
- •Первый закон Ньютона: инерциальная система отсчёта.
- •Экспериментальное задание: «Измерение влажности воздуха с помощью психрометра».
- •Второй закон Ньютона: понятие о массе и силе, принцип суперпозиции сил; формулировка второго закона Ньютона; классический принцип относительности.
- •Магнитное поле: понятие о магнитном поле; магнитная индукция; линии магнитной индукции, магнитный поток; движение заряженных частиц в однородном магнитном поле.
- •Экспериментальное задание: «Построение графика зависимости температуры от времени остывания воды».
- •Третий закон Ньютона: формулировка; характеристика сил действия и противодействия: модуль, направление, точка приложения, природа.
- •Закон электромагнитной индукция Фарадея; правило Ленца; явление самоиндукции; индуктивность; энергия магнитного поля.
- •Экспериментальное задание: «Исследование зависимости периода и частоты свободных колебаний математического маятника от длинны нити».
- •Колебательный контур. Свободные электромагнитные колебания: затухание свободных колебаний; период электромагнитных колебаний.
- •Экспериментальное задание: «Определение показателя преломления пластмассы».
- •1. Закон всемирного тяготения. Сила тяжести, вес и невесомость.
- •Автоколебания: автоколебательная система; автоколебательный генератор незатухающих электромагнитных колебаний.
- •Силы упругости: природа сил упругости; виды упругих деформаций; закон Гука.
- •3.Задача на применение закона радиоактивного распада
- •Силы трения: природа сил трения; коэффициент трения скольжения; закон сухого трения; трение покоя; учёт и использование трения в быту и технике.
- •Трансформатор: принцип трансформации переменного тока; устройство трансформатора; холостой ход; режим нагрузки; передача электрической энергии.
- •3.Экспериментальное задание: «Исследование последовательного соединения проводников».
- •Равновесие твёрдых тел: момент силы; условия равновесия твёрдого тела; устойчивость тел; виды равновесия; принцип минимума потенциальной энергии.
- •2.Электромагнитное поле. Открытие электромагнитных волн: гипотеза Максвелла; экспериментальное; опыты Герца.
- •Экспериментальное задание: «Измерение эдс и внутреннего сопротивления источника тока2.
- •Механическая работа. Мощность. Энергия: кинетическая энергия; потенциальная энергия тела в однородном поле тяготения и энергия упруго деформированного тела; закон сохранения энергии.
- •Задача на применение закона сохранения энергии.
- •Билет 14
- •.1.Закон Паскаля; закон Архимеда; условия плавания тел.
- •Свет как электромагнитная волна. Скорость света. Интерференция света: опыт Юнга; цвета тонких плёнок.
- •Задача на расчет работы и мощности тока.
- •2. Дифракция света: явление дифракции света; явления, наблюдаемые при пропускании света через отверстия малых размеров; дифракция на малом отверстии и от круглого экрана. Дифракционная решётка.
- •Задача на движение заряженной частицы в магнитном поле
- •Гипотеза Планка о квантах; фотоэффект; опыты а.Г.Столетова; уравнение Эйнштейна для фотоэффекта; фотон.
- •Задача на применение закона электромагнитной индукции
- •Законы отражения и преломления света; полное внутреннее отражение; линзы; формула тонкой линзы; оптические приборы.
- •Задача по теме «Вес движущегося тела».
- •Постулаты специальной теории относительности (сто). Полная энергия. Энергия покоя. Релятивистский импульс.
- •Задача на применение закона всемирного тяготения
- •Билет 19
- •Модель строения жидкостей. Насыщенные и ненасыщенные пары; зависимость давления насыщенного пара от температуры; кипение. Влажность воздуха; точка росы, гигрометр, психрометр.
- •Дисперсия и поглощение света; спектроскоп и спектрограф. Различные виды электромагнитных излучений и их практическое применение. Дисперсия
- •Задача по теме «Кинематика»
- •Билет 20
- •Опыт Резерфорда; ядерная модель атома; квантовые постулаты Бора; гипотеза де Бройля о волновых свойствах частиц; дифракция электронов; лазеры.
- •Экспериментальное задание: «Измерение модуля упругости резины».
- •Модели строения атомного ядра; ядерные силы; нуклонная модель ядра; энергия связи ядра; ядерные спектры; ядерные реакции.
- •1. Тепловые машины: основные части и принципы действия тепловых машин; коэффициент полезного действия тепловой машины и пути его повышения; проблемы энергетики и охрана окружающей среды.
- •2. Радиоактивность; радиоактивные излучения; закон радиоактивного распада.
- •Задача на расчёт параметров колебательного контура
- •Необратимость тепловых процессов; второй закон термодинамики и его статистическое истолкование.
- •3. Экспериментальное задание: «Измерение ускорения свободного падения с помощью математического маятника».
- •Солнечная система. Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд.
- •Малые тела Солнечной системы.
- •2. Виды звезд.
- •3. Взрывы и эволюция звезд.
- •Задача на применение первого закона термодинамики.
- •Наша Галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной. Применимость законов физики для объяснения природы космических объектов.
- •5. Будущее Вселенной.
- •Экспериментальное задание: «Исследование параллельного соединения проводников».
- •«Красное смещение» в спектрах галактик. Современные взгляды на строение и эволюцию Вселенной.
- •3. Задача по теме «Кинематика»
Билет 1
Научные методы познания окружающего мира; роль эксперимента и теории в процессе познания природы; моделирование явлений и объектов природы.
Физика — наука о неживой природе.
Любое природное явление в окружающем нас мире имеет множество характеристик и признаков. Желание систематизировать их, понять причины различных проявлений, предсказать их стимулировали научное познание.
Начало научному познанию в физике как науке положил итальянский ученый Галилео Галилей, поставивший первые физические эксперименты и предложивший теоретическое объяснение движения тел. Изучая падение тел разной массы, он впервые провел измерения физических величин при падении тел с высоты и получил количественные соотношения между ними.
Объем информации, получаемый человеком с помощью органов чувств, оказывается недостаточным для того, чтобы выявить ту или иную закономерность. Дополнительную информацию можно получить лишь с помощью экспериментальных установок.
Суть любого эксперимента — наблюдение явления и получение данных, характеризующих результаты исследований.
Электрическая ёмкость: электроёмкость конденсатора; энергия электрического поля.
Конденсатор — система, состоящая из двух проводников, разделенных диэлектриком.
В конденсаторе накапливается электрический заряд и, соответственно, энергия электростатического поля. Способность конденсатора к накоплению заряда характеризуется его электрической емкостью.
Э
лектрическая
емкость конденсатора
— физическая величина, равная отношению
заряда одного из проводников к разности
потенциалов между этими проводниками:
Э
лектроемкость
плоского конденсатора
(система двух плоскопараллельных
пластин площадью S,
находящихся на расстоянии d
друг от друга).
Электроемкость конденсатора зависит:
от площади пластин,
расстояния между ними,
от относительной диэлектрической проницаемости вещества, заполняющего пространство между пластинами
Электроемкость конденсатора не зависит от заряда на пластинах и разности потенциалов, приложенной к ним.
З
ная
электроемкость, получаем энергию
электростатического поля, запасенную
в конденсаторе:
, где С- электроемкость конденсатора, q-заряд пластины,
U-напряжение ( разность потенциалов).
Применение конденсаторов:
Конденсаторы могут накапливать энергию длительное время, а при разрядке через цепь малого сопротивления отдают энергию практически мгновенно. Это свойство конденсаторов используют в лампах-вспышках при фотосъемках.
Конденсаторы применяют для возбуждения квантового источника света - лазеров.
С помощью конденсатора переменной емкости в радиотехнике изменяют частоту.
Задача на применение законов сохранения импульса.
Билет 2
Научные гипотезы; физические законы и теории, границы их применимости.
Физический закон — описание соотношений в природе, проявляющихся при определенных условиях в эксперименте. Особенность закона состоит в том, что с его помощью можно описать другие явления, с которыми не были поставлены эксперименты.
Научная гипотеза — предположение о том, что существует связь между известным и вновь объясняемым явлением.
Галилео Галилей дал количественное описание падения тел на Землю, но не выяснил причину их падения.
Исаак Ньютон, основоположник фундаментальной физической теории, высказал гипотезу: причина падения тел на Землю — притяжение тел к Земле.
Научная теория содержит постулаты, определения, гипотезы и законы, объясняющие явления.
Любая созданная теория должна быть подтверждена экспериментом. Расхождение теории с практикой приводит к совершенствованию старой или созданию принципиально новой теории, дающей новые законы и более глубокое понимание физической реальности. Особенно ценной в науке считается теория, предсказывающая новые экспериментальные данные, которые не могут быть объяснены в рамках старой теории.
примером такой теории в физике является теория относительности Альберта Эйнштейна, предсказавшая и количественно описавшая изменение массы движущегося тела со скоростью, соизмеримой со скоростью света, явление, которое нельзя было объяснить в рамках теории классической физики.
Особенность фундаментальных теорий — их преемственность. Теория может иметь границы применимости. Например, классическая механика справедлива для описания движения тел, скорость которых много меньше скорости света, но с помощью законов Ньютона нельзя описать процессы в микромире. Ни одна научная теория не может быть признана окончательной и верной навсегда. Всегда существует вероятность, что новые наблюдения потребуют поправок к теории