
- •Двоичная система счисления
- •Преобразование двоичных чисел в десятичные
- •Преобразование десятичных чисел в двоичные
- •Восьмеричная система счисления.
- •Шестнадцатеричная система счисления
- •Практическая работа №2. Арифметическое сложение двоичных чисел в форме с плавающей и фиксированной запятой.
- •Числа с фиксированной и плавающей запятой
- •Числа с фиксированной запятой
- •Числа с плавающей запятой
- •Двоичная арифметика
- •Сложение
- •Вычитание
- •Умножение
- •Деление
- •Прямой, обратный и дополнительный коды
- •Прямой код
- •Обратный код
- •Дополнительный код
- •Сложение и вычитание в дополнительном коде
- •Признак переполнения разрядной сетки
- •Практическая работа №3. Минимизация переключательной функции методом карт Карно.
- •Лабораторная работа №1. Исследование преобразователя двоичного кода.
- •Лабораторная работа № 2. Изучение работы виртуального логического конвертора
- •Теоретические сведения физические основы эвм
- •Решение задач на тему: логические схемы
- •Система electronics workbench
- •Лабораторная работа № 3. Виртуальный генератор слова (word generator). Вычитание
- •Краткая теория
- •Вычитание
- •Лабораторная работа №4. Исследование работы асинхронного и синхронного rs-триггера
- •Краткая теория
- •Краткая теория
- •Лабораторная работа №6. Исследование схемы контроля на четность.
- •Краткая теория
- •Лабораторная работа №7. Изучение кода Хэмминга.
- •Краткая теория.
- •Литература:
Восьмеричная система счисления.
В восьмеричной системе счисления употребляются всего восемь цифр, т.е. эта система счисления имеет основание S = 8. В общем виде восьмеричное число выглядит следующим образом:
,
где
.
Восьмеричная система счисления не нужна ЭВМ в отличие от двоичной системы. Она удобна как компактная форма записи чисел и используется программистами (например, в текстах программ для более краткой и удобной записи двоичных кодов команд, адресов и операндов). В восьмеричной системе счисления вес каждого разряда кратен восьми или одной восьмой, поэтому восьмиразрядное двоичное число позволяет выразить десятичные величины в пределах 0-255, а восьмеричное охватывает диапазон 0-99999999 (для двоичной это составляет 27 разрядов).
Поскольку 8=23, то каждый восьмеричный символ можно представить трехбитовым двоичным числом. Для перевода числа из двоичной системы счисления в восьмеричную необходимо разбить это число влево (для целой части) и вправо (для дробной) от точки (запятой) на группы по три разряда (триады) и представить каждую группу цифрой в восьмеричной системе счисления. Крайние неполные триады дополняются необходимым количеством незначащих нулей.
Пример.
Двоичное число 10101011111101(2) записать в восьмеричной системе счисления.
Пример.
Двоичное число 1011.0101(2) записать в восьмеричной системе счисления.
Перевод из восьмеричной системы счисления в двоичную осуществляется путем представления каждой цифры восьмеричного числа трехразрядным двоичным числом (триадой).
Шестнадцатеричная система счисления
Эта система счисления имеет основание S = 16. В общем виде шестнадцатеричное число выглядит следующим образом:
,
где
.
Шестнадцатеричная система счисления позволяет еще короче записывать многоразрядные двоичные числа и, кроме того, сокращать запись 4-разрядного двоичного числа, т.е. полубайта, поскольку 16=24. Шестнадцатеричная система также применяется в текстах программ для более краткой и удобной записи двоичных чисел.
Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить это число влево и вправо от точки на тетрады и представить каждую тетраду цифрой в шестнадцатеричной системе счисления.
Пример.
Двоичное число 10101011111101(2) записать в шестнадцатеричной системе.
Пример.
Двоичное число 11101.01111(2) записать в шестнадцатеричной системе.
Для перевода числа из шестнадцатеричной системы счисления в двоичную, необходимо, наоборот, каждую цифру этого числа заменить тетрадой.
В заключение следует отметить, что перевод из одной системы счисления в другую произвольных чисел можно осуществлять по общим правилам, описанным в разделе “Двоичная система счисления”. Однако на практике переводы чисел из десятичной системы в рассмотренные системы счисления и обратно осуществляются через двоичную систему счисления.
Кроме того, следует помнить, что шестнадцатеричные и восьмеричные числа – это только способ представления больших двоичных чисел, которыми фактически оперирует процессор. При этом шестнадцатеричная система оказывается предпочтительнее, поскольку в современных ЭВМ процессоры манипулируют словами длиной 4, 8, 16, 32 или 64 бита, т.е. длиной слов, кратной 4. В восьмеричной же системе счисления предпочтительны слова, кратные 3 битам, например слова длиной 12 бит (как в PDP-8 фирмы DEC).
Порядок выполнения работы.
Изучить принципы построения позиционных СС и перевод чисел из одной СС в другую.
Заданные исходные десятичные числа перевести в двоичную, восьмеричную, шестнадцатеричную СС методами подбора степеней, оснований, а также делением целой и умножением дробной части на основание СС.
Произвести проверку результатов.
Все вычисления занести в отчет.
Исходные данные к практической работе 1
№ вар |
A1 |
A2 |
№ вар |
А1 |
A2 |
№ вар |
А1 |
A2 |
1 |
43,56 |
81,92 |
11 |
129,18 |
28,84 |
21 |
75,53 |
18,60 |
2 |
85,51 |
17,39 |
12 |
45,30 |
117,47 |
22 |
94,75 |
37,37 |
3 |
15,44 |
62,57 |
13 |
37,35 |
105,43 |
23 |
108,39 |
59,57 |
4 |
77,81 |
81,48 |
14 |
118,49 |
31,37 |
24 |
130,27 |
40,18 |
5 |
95,67 |
27,24 |
15 |
91,47 |
14,69 |
25 |
117,97 |
40,61 |
6 |
87,41 |
19,80 |
16 |
74,18 |
17,83 |
26 |
109,70 |
51,55 |
7 |
18,26 |
69,34 |
17 |
119,41 |
39,61 |
27 |
115,65 |
61,49 |
8 |
32,67 |
107,56 |
18 |
143,23 |
30,71 |
28 |
112,81 |
84,70 |
9 |
112,43 |
89,77 |
19 |
105,27 |
22,55 |
29 |
131,67 |
78,74 |
10 |
21,79 |
98,48 |
20 |
26,48 |
108,59 |
30 |
116,58 |
19,85 |