
- •Глава 1. Предмет и значение аналитической химии 6
- •Глава 2. Теоретические основы аналитической химии 12
- •Глава 3. Качественный анализ 31
- •Глава 4. Количественный анализ 66
- •Введение
- •Глава 1. Предмет и значение аналитической химии
- •1.1. Краткий очерк о развитии аналитической химии
- •Глава 2. Теоретические основы аналитической химии
- •2.1. Химическое равновесие в гомогенной системе. Закон действия масс.
- •2.2. Протолитическая теория кислот и оснований
- •2.3. Степень электролитической диссоциации
- •2.4. Константа диссоциации слабого электролита
- •2.5. Коэффициент активности и ионная сила
- •2.6. Диссоциация воды. Водородный и гидроксильный показатели.
- •2.7. Действие одноименных ионов. Буферные растворы.
- •2.7. Гидролиз солей
- •2.8. Произведение растворимости. Произведение активностей ионов
- •Вопросы для самопроверки
- •Глава 3. Качественный анализ
- •3.1. Особенности аналитических реакций и способы их выполнения
- •3.2. Лабораторное оборудование и техника выполнения качественного анализа
- •3.3. Техника выполнения реакций
- •3.4. Методика выполнения основных операций в полумикроанализе
- •3.5. Реакции обнаружения катионов
- •Кислотно-щелочная классификация катионов
- •3.5.1. Первая группа катионов
- •Реакции ионов серебра
- •1. Реакция с хлороводородной кислотой и ее солями.
- •2. Реакция с гидроксидами щелочных металлов и аммиаком.
- •3. Реакция с хроматом калия k2CrO4 и дихроматом калия k2Cr2o7.
- •4. Реакция с ki.
- •3.5.2. Вторая группа катионов
- •Реакции ионов кальция
- •Реакции ионов бария
- •1. Реакции с серной кислотой и ее солями.
- •2. Реакции с хроматом калия k2CrO4 и дихроматом калия k2Cr2o7.
- •3. Реакция с оксалатом аммония (nh4)2c2o4.
- •3.5.3. Третья группа катионов
- •Реакции ионов хрома (III)
- •4. Окисление хрома(III) в кислой среде.
- •3.5.4. Четвертая группа катионов
- •Реакции ионов магния
- •4. Капельная реакция Тананаева.
- •Реакции ионов железа(II)
- •Реакции ионов железа(III)
- •3.5.5.Пятая группа катионов
- •Реакции ионов меди
- •3.5.6. Шестая группа катионов
- •Реакции ионов калия
- •Реакции ионов натрия
- •1.Реакция с дигидростильбатом калия kh2SbO4:
- •Реакции ионов аммония
- •Особенности анализа катионов VI группы
- •3.6. Реакции обнаружения анионов
- •Классификация анионов
- •3.6.1. Первая группа анионов
- •Реакции карбонат-ионов
- •2. Реакция с солями бария:
- •Реакции сульфат-ионов
- •Реакции фосфат-ионов
- •3.6.2.Вторая группа анионов
- •Реакции хлорид-ионов
- •3. Реакция с нитратом свинца:
- •3.6.3. Третья группа анионов
- •Реакции нитрат-ионов
- •3.7. Лабораторные работы по качественному анализу Работа 1 Дробное определение катионов:
- •Работа 2
- •Глава 4. Количественный анализ
- •4.1. Выполнение измерений, представление и обработка результатов химического анализа
- •4.1.1. Измерение аналитического сигнала
- •4.1.2 Погрешность методов анализа
- •4.1.3. Обработка результатов методом математической статистики
- •4.2. Гравиметрические методы анализа
- •Требования к осаждаемой форме
- •Требования к весовой форме
- •Требования к осадителю
- •Расчет количества осадителя
- •Образование осадков и их свойства
- •Фильтрование
- •Вычисления в гравиметрическом анализе
- •Вопросы и задачи для самостоятельной подготовки
- •4.3. Титриметрический анализ
- •Классификация титриметрических методов анализа
- •4.3.1. Способы выражения концентрации растворов
- •4.3.2. Техника работы
- •Растворы, применяемые в титриметрии
- •4.3.3. Расчеты в титриметрических методах анализа
- •Коэффициент поправки
- •4.3.4. Метод кислотно-основного титрования
- •Работа 1. Стандартизация раствора хлороводородной кислоты по тетраборату натрия
- •Работа 2. Определение устранимой жесткости (щелочности) воды
- •Работа 3. Определение содержания гидроксида натрия
- •Работа 4. Определение содержания хлороводородной кислоты
- •Вопросы для самостоятельной подготовки
- •4.3.5. Комплексонометрическое титрование
- •Работа 5. Определение общей жесткости воды
- •Работа 6. Определение кальциевой и магниевой жесткости воды
- •Работа 7. Определение содержания меди
- •Работа 8. Определение содержания железа (III)
- •Вопросы для самостоятельной подготовки
- •4.3.6. Окислительно-восстановительное титрование
- •Перманганатометрия
- •Работа 9. Определение содержания железа (II)
- •Вопросы для самостоятельной подготовки
- •4.4. Физико-химические методы анализа
- •Спектроскопические методы анализа
- •Электрохимические методы анализа
- •Методы хроматографического анализа
- •Важнейшие физико-химические методы анализа
- •Вопросы для самостоятельной подготовки
- •4.5. Решение расчетных задач Титриметрические методы анализа
- •Примеры решения задач на вычисление рН растворов
- •4.6. Задачи для самостоятельного решения
- •Приложение Содержание курса «Химия (аналитическая)» для студентов геологического факультета
- •Раздел 1. Теоретические основы аналитической химии
- •Тема 2. Качественный анализ
- •Тема 3. Количественный анализ
- •Литература
- •614990. Пермь, ул. Букирева, 15
4.4. Физико-химические методы анализа
Химические методы анализа не всегда удовлетворяют современным требованиям, особенно при проверке чистоты веществ. Получить абсолютно чистое вещество практически невозможно, так как в нем тотчас происходит «растворение» компонентов окружающей среды, т.е. примесей.
В аналитической химии чистым называют вещество, в котором современными методами не удается обнаружить примеси. Например, спектрально чистыми веществами называют металлы, в которых примеси не обнаруживаются при помощи спектрального анализа. Анализ особо чистых веществ на содержание примесей практикуется в атомной, полупроводниковой и металлургической промышленности. Уран, используемый в атомных реакторах, анализируют на содержание примесей бора, которого должно быть не более стотысячных долей процента. Цирконий, ниобий, титан и вольфрам проявляют необходимую пластичность только после очистки от других элементов и газов (кислорода, водорода) до содержания примесей 10-5.
Для управления технологическими процессами в промышленности, а также биологическими процессами нужны быстрые методы анализа, позволяющие контролировать ход процесса. Физико-химические методы, отличаясь высокой чувствительностью и экспрессностью выполнения, дают возможность автоматизировать химико-аналитические определения и являются необходимыми при анализе малых и ультрамалых количеств веществ.
В физико-химических методах анализа широко используются химические реакции, которые сопровождаются изменением физических свойств анализируемой системы, например, ее цвета, интенсивности окраски, прозрачности, флуоресценции, электро- и теплопроводности и других электрических, магнитных, оптических, радиоактивных и т.п. свойств. Эти свойства находятся в зависимости от концентрации вещества.
Во многих случаях для выполнения анализа этими методами не требуется химическая реакция. Надо только измерить показатели каких-либо физических свойств анализируемого вещества: электропроводность, светопоглощение, светопреломление и др.
Сущность этих методов сводится к установлению соотношения между составом и свойствами исследуемых систем.
При выполнении анализов физико-химическими методами точку эквивалентности (конец реакции) определяют не визуально, а при помощи приборов, которые фиксируют изменение физических свойств исследуемого вещества в точке эквивалентности. Для этой цели обычно применяют приборы с относительно сложными оптическими или электрическими схемами, поэтому эти методы получили название инструментальных методов анализа.
Недостатком этих методов является меньшая точность, чем у химических методов. Точность большинства физико-химических методов составляет 5%. Многие из них целесообразно выполнять лишь для массовых анализов.
Основу физико-химических методов анализа составляют оптические, электрохимические и хроматографические методы. Основные инструментальные методы анализа представлены в табл. 6.
Спектроскопические методы анализа
Эти методы основаны на способности атомов и молекул вещества испускать, поглощать или рассеивать электромагнитное излучение.
По типу оптических явлений различают спектроскопию испускания, поглощения и рассеяния. Спектроскопию испускания, в свою очередь, подразделяют на эмиссионную и люминесцентную.
По изучаемым объектам спектроскопию подразделяют на ядерную, атомную и молекулярную.
Эмиссионный спектральный анализ основан на изучении спектров испускания (излучения) или эмиссионных спектров различных веществ. В этом методе анализируемую пробу сжигают в пламени газовой горелки (≈ 2000-3000 ˚С), электрической дуги (≈ 5000-7000 ˚С) или высоковольтной искры (≈ 7000-15000 ˚С). Анализируемое вещество испаряется, диссоциирует на составляющие атомы или ионы, которые возбуждаясь дают излучение. Свет, излучаемый раскаленными газами или парами, проходя через призму спектрографа, преломляется и разлагается на компоненты. Экспериментатор при этом наблюдает ряд отдельных цветных линий, составляющих вместе так называемый линейчатый спектр. Линейчатый спектр каждого элемента характеризуется постоянными спектральными линиями, соответствующими лучам с определенной длиной волны и частотой колебаний. По наличию этих линий можно судить о присутствии того или иного элемента в анализируемом веществе. Количественное определение элементов основано на измерении интенсивности характерных спектральных линий того или иного элемента, входящего в состав анализируемого вещества. При этом используется зависимость интенсивности спектральных линий от концентрации определяемого элемента.
Фотометрия пламени (или эмиссионная пламенная фотометрия) – метод, основанный на измерении интенсивности излучения атомов, возбуждаемого вещества в пламени. Исследуемый раствор распыляют (действием сжатого воздуха или кислорода) и в виде аэрозоля вводят в бесцветное пламя газовой горелки, работающей на ацетилене, водороде или на пропане. Если раствор содержит ионы легко возбуждаемых элементов, то в пламени возникает характерное для того или иного элемента излучение и пламя окрашивается. Интенсивность излучения прямо пропорциональна концентрации определяемого элемента в растворе. Фотометрию пламени используют чаще всего для определения щелочных и щелочно-земельных металлов (лития, калия, натрия, рубидия и др.).
Люминесцентный (флуоресцентный) анализ использует свечение исследуемого объекта, возникающее под действием ультрафиолетовых лучей. Люминесцируют не все вещества, однако после обработки специальными реактивами люминесценция наблюдается у многих веществ (хемилюминесценция). Этот метод позволяет обнаружить количества люминесцирующих примесей порядка 10-10 и даже 10-13.
Абсорбционный спектральный анализ основан на изучении спектров поглощения анализируемых веществ. Каждое вещество поглощает (или отражает) определенное количество света. Величина светопоглощения определяется природой анализируемого вещества и его концентрацией в растворе.
Спектрофотометрия изучает поглощение анализируемым веществом света с определенной длиной волны, т.е. поглощение монохроматического излучения. Такие измерения выполняют с помощью специальных приборов – спектрофотометров.
У веществ в зависимости от их природы наиболее ярко выраженные полосы поглощения располагаются в разных областях спектра: в ультрафиолетовой (длина волн 200 – 400 нм), видимой (400 - 700 нм) и инфракрасной (800 - 25000 нм). Соответственно этому абсорбционные спектральные определения производят в ультрафиолетовой, видимой и инфракрасной областях спектра.
Фотометрический метод основан на измерении поглощения анализируемым веществом света не строго монохроматического излучения. В этом случае используют более простые приборы, называемые фотоколориметрами.
Колориметрия – метод, основанный на определении содержания веществ по интенсивности окраски. Оценку интенсивности окраски раствора производят визуально или с помощью соответствующих приборов. Для определения количественного содержания элемента в исследуемом растворе сравнивают окраску этого раствора с окраской «стандартного» раствора.
Нефелометрия использует явление рассеяния света твердыми частицами, взвешенными в растворе. При пропускании света через кювету, наполненную суспензией, часть его поглощается, друга часть отражается и, наконец, значительная часть рассеивается во всех направлениях. Нефелометрическое определение состоит в сравнении светорассеяния анализируемой суспензии с аналогичным показателем стандартного раствора.
Турбидиметрия – метод, основанный на измерении количества света, поглощаемого неокрашенными суспензиями.