
- •Глава 1. Предмет и значение аналитической химии 6
- •Глава 2. Теоретические основы аналитической химии 12
- •Глава 3. Качественный анализ 31
- •Глава 4. Количественный анализ 66
- •Введение
- •Глава 1. Предмет и значение аналитической химии
- •1.1. Краткий очерк о развитии аналитической химии
- •Глава 2. Теоретические основы аналитической химии
- •2.1. Химическое равновесие в гомогенной системе. Закон действия масс.
- •2.2. Протолитическая теория кислот и оснований
- •2.3. Степень электролитической диссоциации
- •2.4. Константа диссоциации слабого электролита
- •2.5. Коэффициент активности и ионная сила
- •2.6. Диссоциация воды. Водородный и гидроксильный показатели.
- •2.7. Действие одноименных ионов. Буферные растворы.
- •2.7. Гидролиз солей
- •2.8. Произведение растворимости. Произведение активностей ионов
- •Вопросы для самопроверки
- •Глава 3. Качественный анализ
- •3.1. Особенности аналитических реакций и способы их выполнения
- •3.2. Лабораторное оборудование и техника выполнения качественного анализа
- •3.3. Техника выполнения реакций
- •3.4. Методика выполнения основных операций в полумикроанализе
- •3.5. Реакции обнаружения катионов
- •Кислотно-щелочная классификация катионов
- •3.5.1. Первая группа катионов
- •Реакции ионов серебра
- •1. Реакция с хлороводородной кислотой и ее солями.
- •2. Реакция с гидроксидами щелочных металлов и аммиаком.
- •3. Реакция с хроматом калия k2CrO4 и дихроматом калия k2Cr2o7.
- •4. Реакция с ki.
- •3.5.2. Вторая группа катионов
- •Реакции ионов кальция
- •Реакции ионов бария
- •1. Реакции с серной кислотой и ее солями.
- •2. Реакции с хроматом калия k2CrO4 и дихроматом калия k2Cr2o7.
- •3. Реакция с оксалатом аммония (nh4)2c2o4.
- •3.5.3. Третья группа катионов
- •Реакции ионов хрома (III)
- •4. Окисление хрома(III) в кислой среде.
- •3.5.4. Четвертая группа катионов
- •Реакции ионов магния
- •4. Капельная реакция Тананаева.
- •Реакции ионов железа(II)
- •Реакции ионов железа(III)
- •3.5.5.Пятая группа катионов
- •Реакции ионов меди
- •3.5.6. Шестая группа катионов
- •Реакции ионов калия
- •Реакции ионов натрия
- •1.Реакция с дигидростильбатом калия kh2SbO4:
- •Реакции ионов аммония
- •Особенности анализа катионов VI группы
- •3.6. Реакции обнаружения анионов
- •Классификация анионов
- •3.6.1. Первая группа анионов
- •Реакции карбонат-ионов
- •2. Реакция с солями бария:
- •Реакции сульфат-ионов
- •Реакции фосфат-ионов
- •3.6.2.Вторая группа анионов
- •Реакции хлорид-ионов
- •3. Реакция с нитратом свинца:
- •3.6.3. Третья группа анионов
- •Реакции нитрат-ионов
- •3.7. Лабораторные работы по качественному анализу Работа 1 Дробное определение катионов:
- •Работа 2
- •Глава 4. Количественный анализ
- •4.1. Выполнение измерений, представление и обработка результатов химического анализа
- •4.1.1. Измерение аналитического сигнала
- •4.1.2 Погрешность методов анализа
- •4.1.3. Обработка результатов методом математической статистики
- •4.2. Гравиметрические методы анализа
- •Требования к осаждаемой форме
- •Требования к весовой форме
- •Требования к осадителю
- •Расчет количества осадителя
- •Образование осадков и их свойства
- •Фильтрование
- •Вычисления в гравиметрическом анализе
- •Вопросы и задачи для самостоятельной подготовки
- •4.3. Титриметрический анализ
- •Классификация титриметрических методов анализа
- •4.3.1. Способы выражения концентрации растворов
- •4.3.2. Техника работы
- •Растворы, применяемые в титриметрии
- •4.3.3. Расчеты в титриметрических методах анализа
- •Коэффициент поправки
- •4.3.4. Метод кислотно-основного титрования
- •Работа 1. Стандартизация раствора хлороводородной кислоты по тетраборату натрия
- •Работа 2. Определение устранимой жесткости (щелочности) воды
- •Работа 3. Определение содержания гидроксида натрия
- •Работа 4. Определение содержания хлороводородной кислоты
- •Вопросы для самостоятельной подготовки
- •4.3.5. Комплексонометрическое титрование
- •Работа 5. Определение общей жесткости воды
- •Работа 6. Определение кальциевой и магниевой жесткости воды
- •Работа 7. Определение содержания меди
- •Работа 8. Определение содержания железа (III)
- •Вопросы для самостоятельной подготовки
- •4.3.6. Окислительно-восстановительное титрование
- •Перманганатометрия
- •Работа 9. Определение содержания железа (II)
- •Вопросы для самостоятельной подготовки
- •4.4. Физико-химические методы анализа
- •Спектроскопические методы анализа
- •Электрохимические методы анализа
- •Методы хроматографического анализа
- •Важнейшие физико-химические методы анализа
- •Вопросы для самостоятельной подготовки
- •4.5. Решение расчетных задач Титриметрические методы анализа
- •Примеры решения задач на вычисление рН растворов
- •4.6. Задачи для самостоятельного решения
- •Приложение Содержание курса «Химия (аналитическая)» для студентов геологического факультета
- •Раздел 1. Теоретические основы аналитической химии
- •Тема 2. Качественный анализ
- •Тема 3. Количественный анализ
- •Литература
- •614990. Пермь, ул. Букирева, 15
Фильтрование
Фильтрованием отделяют полученный осадок от раствора, содержащего посторонние примеси. Тщательность выполнения этой операции сказывается на точности определений.
В гравиметрическом анализе применяют не обычную фильтровальную бумагу, а так называемые беззольные фильтры. В процессе изготовления их подвергают обработке кислотами (HCl, HF) и таким образом удаляют большую часть минеральных веществ. Масса золы, остающаяся при сжигании одного беззольного фильтра, бывает настолько мала, что ею пренебрегают. Беззольные фильтры выпускают нескольких сортов, они различаются по диаметру (6, 7, 9 и 11 см). В зависимости от плотности бумаги пачка каждого сорта снабжена лентой определенного цвета.
Синяя лента – фильтры наиболее плотные, мелкопористые и медленно фильтрующие; применяют для отделения мелкокристаллических осадков сульфата бария и оксалата кальция.
Белая лента – фильтры средней плотности, применяемые для отделения большинства кристаллических осадков.
Красная (или черная лента)- наименее плотные, т.е. быстрофильтрующие и крупнопористые фильтры; их используют для отделения аморфных осадков гидроксидов железа(III), алюминия и др.
Перед началом фильтрования выбирают фильтр необходимой плотности и подходящего размера. При этом руководствуются не объемом фильтруемой жидкости, а массой отделяемого осадка. Осадок должен занимать не более половины объема фильтра, иначе возникнут затруднения с его промыванием.
Воронку с фильтром помещают в кольцо штатива и подставляют под нее стакан для собирания фильтрата. Во избежание разбрызгивания жидкости скошенный конец воронки должен касаться внутренней стенки стакана. Для перенесения осадка на фильтр и его промывания используют метод декантации,т.е. осторожно сливают отстоявшуюся жидкость с осадка, стараясь не взмутить осадок, чтобы поры фильтра возможно дольше не забились твердыми частицами и фильтрование происходило быстрее.
Вычисления в гравиметрическом анализе
Результаты гравиметрических определений чаще всего выражают в абсолютных величинах или в процентах к навеске вещества. Например, если в силикате определяют содержание SiO2, то для вычисления пользуются формулой
,
так как гравиметрической формой является определяемое вещество.
Однако чаще массу определяемого компонента непосредственно не взвешивают. Например, при определении сульфат-ионов взвешивают осадок сульфата бария. Поэтому для пересчета массы осадка в массу определяемого компонента вводят гравиметрический фактор F, который равен
где
а и
b
– целые
числа, на которые умножают молярные
массы, чтобы число молей в числителе и
знаменателе было химически эквивалентно.
Например, если гравиметрической формой
является Mg2P2O7,
то для пересчета в MgO
следует использовать
Величину навески пробы для выполнения одного определения можно рассчитать по формуле
,
где g – искомая навеска, г; т – масса гравиметрической формы; F – гравиметрический фактор; ω – содержание определяемого компонента,%.
Масса гравиметрической формы определяется с одной стороны, погрешностью аналитических весов, с другой – оптимальной массой осаждаемой формы.
В зависимости от структуры осадка масса осаждаемой формы может колебаться в следующих интервалах (в г):
аморфный (Fe2SO4∙nH2O и т.п.)……………………………0,07 - 0,1
кристаллический, легкий (CaCO3 и т.п.)……………………0,1 - 0,15
кристаллический, тяжелый (BaSO4 и т.п.)………………….0,2 – 0,4
кристаллический, очень тяжелый (PbSO4 и т.п.)…………..до 0,5
Эти примерные критерии служат основанием для оценки массы гравиметрической формы и массы пробы соответственно.