
- •Лекция 1. Введение в цифровую обработку сигналов Введение
- •1.1. Предисловие к цифровой обработке сигналов [1i].
- •1.2. Ключевые операции цифровой обработки.
- •1.3. Области применения цифровой обработки.
- •Литература
- •Лекция 2. Цифровые фильтры обработки одномерных сигналов. Введение
- •2.1. Цифровые фильтры.
- •2.1.6. Интегрирующий рекурсивный фильтр.
- •2.2. Импульсная реакция фильтров.
- •2.3. Передаточные функции фильтров.
- •2.4. Частотные характеристики фильтров.
- •2.5. Структурные схемы цифровых фильтров.
- •Литература
- •Лекция 3. Фильтры сглаживания. Метод наименьших квадратов. Введение
- •3.1. Фильтры мнк 1-го порядка.
- •3.3. Фильтры мнк 4-го порядка.
- •3.4. Расчет простого фильтра по частотной характеристике.
- •Литература
- •Лекция 4. Разностные фильтры и фильтры интегрирования. Введение
- •4.1. Разностные операторы.
- •4.2. Интегрирование данных.
- •Литература
- •Лекция 5. Фильтрация случайных сигналов Введение
- •5.1. Фильтрация случайных сигналов.
- •5.2. Спектры мощности случайных сигналов.
- •Литература
- •Лекция 6. Весовые функции. Введение
- •3.1. Явление Гиббса.
- •3.2. Весовые функции.
- •Литература
- •Лекция 7. Нерекурсивные частотные цифровые фильтры Введение
- •7.1. Общие сведения.
- •7.2. Идеальные частотные фильтры.
- •7.3. Конечные приближения идеальных фильтров.
- •7.4. Гладкие частотные фильтры.
- •7.5. Дифференцирующие цифровые фильтры.
- •7.6. Альтернативные методы расчета нцф.
- •Литература
- •Лекция 8. Z-преобразование сигналов и системных функций Введение
- •8.2. Пространство z-полиномов.
- •8.3. Свойства z-преобразования.
- •8.4. Обратное z-преобразование.
- •8.5. Применение z – преобразования.
- •Литература
- •Лекция 9. Рекурсивные цифровые фильтры Введение
- •9.1. Принципы рекурсивной фильтрации.
- •9.2. Разработка Рекурсивных цифровых фильтров [43].
- •9.3. Режекторные и селекторные фильтры.
- •9.4. Билинейное z-преобразование.
- •9.5. Типы рекурсивных частотных фильтров.
- •Литература
- •Лекция 10. Рекурсивные частотные цифровые фильтры Введение
- •10.1. Низкочастотный фильтр Баттеруорта.
- •10.2. Высокочастотный фильтр Баттеруорта.
- •10.3. Полосовой фильтр Баттеруорта.
- •10.4. Фильтры Чебышева.
- •10.5. Дополнительные сведения.
- •Литература
- •Тема 11. Адаптивная цифровая фильтрация данных Введение
- •11.1. Общие сведения об адаптивной цифровой фильтрации.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.3. Статистическая группировка полезной информации.
- •Литература
- •Лекция 12. Оптимальные линейные цифровые фильтры. Введение
- •12.1. Случайные процессы и шумы.
- •12.2. Критерии построения оптимальных фильтров.
- •12.3. Фильтр Колмогорова-Винера.
- •12.4. Оптимальные фильтры сжатия сигналов.
- •12.5. Фильтр обнаружения сигналов.
- •12.6. Энергетический фильтр.
- •Литература
- •Лекция 13. Деконволюция цифровых сигналов введение
- •13.1. Понятие деконволюции.
- •13.2. Инверсия импульсного отклика фильтра.
- •13.3. Оптимальные фильтры деконволюции.
- •13.4. Рекурсивная деконволюция.
- •13.5. Фильтры сжатия сигналов
- •Литература
Литература
Адаптивные фильтры. /Под ред. К.Ф.Н.Коуэна и П.М.Гранта. – М.: Мир, 1988, 392 с.
Айфичер Э., Джервис Б. Цифровая обработка сигналов. Практический подход. / М., "Вильямс", 2004, 992 с.
Лекция 12. Оптимальные линейные цифровые фильтры. Введение
Результаты практических измерений, подлежащие обработке, содержат определенный полезный сигнал на фоне различного рода помех (шумов), при этом спектр помех в общем случае в той или иной мере представлен по всему интервалу главного частотного диапазона. Другими словами, спектр полезного сигнала наложен на спектр шумов. В этих условиях ставится задача реализации так называемых оптимальных фильтров, которые, в зависимости от своего конкретного назначения, позволяют достаточно надежно производить обнаружение сигнала, наилучшим образом выделять сигнал на фоне помех или в максимальной степени подавить помехи без существенного искажения сигнала.
Для создания оптимального фильтра необходимо выполнить постановку, формализацию и решение задачи синтеза фильтров, удовлетворяющих заданной совокупности показателей качества и ограничений. Главным критерием при проектировании таких систем обычно является минимизация среднеквадратичной ошибки. В зависимости от того, какими уравнениями описывается состояние системы, оптимальные фильтры подразделяются на линейные и нелинейные. Линейные фильтры, которые и рассматриваются в настоящей теме, обычно базируются на оптимальном фильтре Колмогорова-Винера.
12.1. Случайные процессы и шумы.
Случайные процессы и шумы описываются функциями автокорреляции и спектрами мощности. Модели случайных процессов (сигналов) с заданными статистическими характеристиками обычно получают фильтрацией белого шума.
Белый шум является стационарным случайным процессом q(t), у которого автокорреляционная функция описывается дельта - функцией Дирака и, соответственно, спектральная плотность мощности не зависит от частоты и имеет постоянное значение Wq(f) = , равное дисперсии значений q(t). Другими словами, все спектральные составляющие белого шума имеют одинаковую мощность (как белый цвет содержит все цвета видимого спектра). По существу, это идеализированный случайный процесс с бесконечной энергией. Но в случае постоянства спектральной плотности мощности случайного процесса в конечном диапазоне частот введение такой идеализации позволяет разрабатывать достаточно легко реализуемые оптимальные методы фильтрации. Многие помехи в радиотехнике, в технике связи и в других отраслях, в том числе в информатике, рассматривают как белый шум, если эффективная ширина спектра сигналов Bs много меньше эффективной ширины спектра шумов Bq, а спектральная плотность мощности шумов слабо изменяется в интервале спектра сигнала. Понятие "белый шум" определяет только спектральную характеристику случайного процесса и под это понятие подпадают любые случайные процессы, имеющие равномерный энергетический спектр и различные законы распределения.
Если частотный диапазон спектра, на котором рассматриваются сигналы и помехи, равен 0-В, то спектральная плотность шума задается в виде:
Wq(f)=2, 0 f B; Wq(f)=0, f > B, (12.1.1)
при этом корреляционная функция шума определяется выражением:
Rq()= 2 Bsin(2B)/2B. (12.1.2)
Эффективный интервал корреляции:
Tk
= 2
|Rq()|d
/Rq(0).
(12.1.3)
Рис. 12.1.1. Функции
корреляции белого
шума в частотном
интервале 0-В.
Как следует из всех этих выражений и наглядно видно на рис. 12.1.1, при ограничении частотного диапазона в шумах появляется определенная корреляция между значениями, и, чем меньше частотный диапазон шумов, тем больше их радиус корреляции. По существу, ограничение шумов определенным частотным диапазоном эквивалентно фильтрации белого шума частотным фильтром с соответствующей шириной полосы пропускания, при этом, корреляционная функция импульсного отклика фильтра свертывается с дельта – функцией белого шума.
Модель белого шума q(t) можно формировать как случайную по времени (аргументу) последовательность дельта - импульсов (ti) со случайными амплитудными значениями ai:
q(t) = i ai (t-ti), (12.1.4)
которая удовлетворяет условиям статистической однородности: постоянное среднее число импульсов в единицу времени и статистическая независимость появления каждого импульса от предыдущих. Такой поток импульсов, который называют пуассоновским, является некоррелированным и имеет равномерный спектр плотности мощности:
Wq() = c2 = Na2,
где N - число импульсов на интервале Т реализации случайного процесса, a2 -дисперсия амплитуд импульсов.
Фильтрация белого шума. Спектральное описание белого шума оказывается удобным при учете влияния на него амплитудно-частотных характеристик различных устройств. Если на входе фильтра с импульсным откликом h(t) действует белый шум q(t), то сигнал на выходе фильтра:
g(t) = h(t) ③ q(t) = h(t) ③i ai (t-ti) =i ai h(t-ti), (12.1.5)
т.е. выходной сигнал будет представлять собой последовательность сигналов импульсной реакции фильтра h(t) с амплитудой ai, при этом автокорреляционная функция и спектр мощности выходного потока также становятся подобными ФАК и спектру мощности импульсной реакции фильтра, и в первом приближении определяются выражениями:
Rg()
N
a2
Rh()
= c2 Rh(),
(12.1.6)
Wg() N a2 |H()|2 = c2 |H()|2. (12.1.7)
Этот результат известен как теорема Кэмпбелла.