
- •Лекция 1. Введение в цифровую обработку сигналов Введение
- •1.1. Предисловие к цифровой обработке сигналов [1i].
- •1.2. Ключевые операции цифровой обработки.
- •1.3. Области применения цифровой обработки.
- •Литература
- •Лекция 2. Цифровые фильтры обработки одномерных сигналов. Введение
- •2.1. Цифровые фильтры.
- •2.1.6. Интегрирующий рекурсивный фильтр.
- •2.2. Импульсная реакция фильтров.
- •2.3. Передаточные функции фильтров.
- •2.4. Частотные характеристики фильтров.
- •2.5. Структурные схемы цифровых фильтров.
- •Литература
- •Лекция 3. Фильтры сглаживания. Метод наименьших квадратов. Введение
- •3.1. Фильтры мнк 1-го порядка.
- •3.3. Фильтры мнк 4-го порядка.
- •3.4. Расчет простого фильтра по частотной характеристике.
- •Литература
- •Лекция 4. Разностные фильтры и фильтры интегрирования. Введение
- •4.1. Разностные операторы.
- •4.2. Интегрирование данных.
- •Литература
- •Лекция 5. Фильтрация случайных сигналов Введение
- •5.1. Фильтрация случайных сигналов.
- •5.2. Спектры мощности случайных сигналов.
- •Литература
- •Лекция 6. Весовые функции. Введение
- •3.1. Явление Гиббса.
- •3.2. Весовые функции.
- •Литература
- •Лекция 7. Нерекурсивные частотные цифровые фильтры Введение
- •7.1. Общие сведения.
- •7.2. Идеальные частотные фильтры.
- •7.3. Конечные приближения идеальных фильтров.
- •7.4. Гладкие частотные фильтры.
- •7.5. Дифференцирующие цифровые фильтры.
- •7.6. Альтернативные методы расчета нцф.
- •Литература
- •Лекция 8. Z-преобразование сигналов и системных функций Введение
- •8.2. Пространство z-полиномов.
- •8.3. Свойства z-преобразования.
- •8.4. Обратное z-преобразование.
- •8.5. Применение z – преобразования.
- •Литература
- •Лекция 9. Рекурсивные цифровые фильтры Введение
- •9.1. Принципы рекурсивной фильтрации.
- •9.2. Разработка Рекурсивных цифровых фильтров [43].
- •9.3. Режекторные и селекторные фильтры.
- •9.4. Билинейное z-преобразование.
- •9.5. Типы рекурсивных частотных фильтров.
- •Литература
- •Лекция 10. Рекурсивные частотные цифровые фильтры Введение
- •10.1. Низкочастотный фильтр Баттеруорта.
- •10.2. Высокочастотный фильтр Баттеруорта.
- •10.3. Полосовой фильтр Баттеруорта.
- •10.4. Фильтры Чебышева.
- •10.5. Дополнительные сведения.
- •Литература
- •Тема 11. Адаптивная цифровая фильтрация данных Введение
- •11.1. Общие сведения об адаптивной цифровой фильтрации.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.3. Статистическая группировка полезной информации.
- •Литература
- •Лекция 12. Оптимальные линейные цифровые фильтры. Введение
- •12.1. Случайные процессы и шумы.
- •12.2. Критерии построения оптимальных фильтров.
- •12.3. Фильтр Колмогорова-Винера.
- •12.4. Оптимальные фильтры сжатия сигналов.
- •12.5. Фильтр обнаружения сигналов.
- •12.6. Энергетический фильтр.
- •Литература
- •Лекция 13. Деконволюция цифровых сигналов введение
- •13.1. Понятие деконволюции.
- •13.2. Инверсия импульсного отклика фильтра.
- •13.3. Оптимальные фильтры деконволюции.
- •13.4. Рекурсивная деконволюция.
- •13.5. Фильтры сжатия сигналов
- •Литература
Литература
Канасевич Э.Р. Анализ временных последовательностей в геофизике. - М.: Недра, 1985.- 300 с.
Айфичер Э., Джервис Б. Цифровая обработка сигналов. Практический подход. / М., "Вильямс", 2004, 992 с.
Машеров Е. Цифровая обработка сигналов – некоторые основные понятия.
Давыдов А.В. Теория сигналов и систем.
Лекция 2. Цифровые фильтры обработки одномерных сигналов. Введение
Задачей любого исследования является установление неизвестных свойств среды или отдельных конкретных объектов по данным наблюдения процессов, в них происходящих. Изучаемые объекты могут оказаться труднодоступными или вовсе недоступными для непосредственного изучения методами прямого контакта. Например, о строении земных недр на глубинах более 10-15 км мы можем судить исключительно по данным прошедших сквозь них сейсмических волн и по характеристикам гравитационного и магнитного полей Земли. По этой причине разработка методов математической обработки и интерпретации результатов наблюдений, установления взаимосвязи между физическими свойствами природных сред и происходящих в них процессов, имеет большое значение.
Предмет цифровой фильтрации данных (сигналов) является естественным введением в широкую и фундаментальную область цифровой обработки информации. Под фильтрацией будем понимать любое преобразование информации (сигналов, результатов наблюдений), при котором во входной последовательности обрабатываемых данных целенаправленно изменяются определенные соотношения (динамические или частотные) между различными компонентами этих данных.
Как известно, преобразование динамики сигналов (и данных, которые несут эти сигналы) осуществляется в системах. Системы, избирательно меняющие форму сигналов (амплитудно-частотную или фазово-частотную характеристику), устранение или уменьшение помех, извлечение из сигналов определенной информации, разделение сигналов на определенные составляющие, и т.п. называют фильтрами. Соответственно, фильтры с любым целевым назначением являются частным случаем систем преобразования сигналов, в рамках теории которых они и будут рассматриваться.
К основным операциям фильтрации информации относят операции сглаживания, прогнозирования, дифференцирования, интегрирования и разделения сигналов, а также выделение информационных (полезных) сигналов и подавление шумов (помех). Основными методами цифровой фильтрации данных являются частотная селекция сигналов и оптимальная (адаптивная) фильтрация.
В настоящем курсе рассматриваются, в основном, методы линейной обработки данных (носителей этих данных - сигналов) линейными дискретными системами. Линейными называют системы, которые осуществляют преобразование линейных комбинаций входных сигналов в суперпозицию выходных сигналов. Принцип реализации линейных систем, физический - в виде специальных микропроцессорных устройств, или алгоритмический - в виде программ на ЭВМ, существенного значения не имеет и определяет только их потенциальные возможности.
В общем случае термином Цифровой фильтр называют аппаратную или программную реализацию математического алгоритма, входом которого является цифровой сигнал, а выходом – другой цифровой сигнал с определенным образом модифицированной формой и/или амплитудной и фазовой характеристикой. Классификация цифровых фильтров обычно базируется на функциональных признаках алгоритмов цифровой фильтрации, согласно которому ЦФ подразделяются на 4 группы: фильтры частотной селекции, оптимальные (квазиоптимальные), адаптивные и эвристические. Наиболее изученными и опробованными на практике являются ЦФ частотной селекции.