
- •Лекция 1. Введение в цифровую обработку сигналов Введение
- •1.1. Предисловие к цифровой обработке сигналов [1i].
- •1.2. Ключевые операции цифровой обработки.
- •1.3. Области применения цифровой обработки.
- •Литература
- •Лекция 2. Цифровые фильтры обработки одномерных сигналов. Введение
- •2.1. Цифровые фильтры.
- •2.1.6. Интегрирующий рекурсивный фильтр.
- •2.2. Импульсная реакция фильтров.
- •2.3. Передаточные функции фильтров.
- •2.4. Частотные характеристики фильтров.
- •2.5. Структурные схемы цифровых фильтров.
- •Литература
- •Лекция 3. Фильтры сглаживания. Метод наименьших квадратов. Введение
- •3.1. Фильтры мнк 1-го порядка.
- •3.3. Фильтры мнк 4-го порядка.
- •3.4. Расчет простого фильтра по частотной характеристике.
- •Литература
- •Лекция 4. Разностные фильтры и фильтры интегрирования. Введение
- •4.1. Разностные операторы.
- •4.2. Интегрирование данных.
- •Литература
- •Лекция 5. Фильтрация случайных сигналов Введение
- •5.1. Фильтрация случайных сигналов.
- •5.2. Спектры мощности случайных сигналов.
- •Литература
- •Лекция 6. Весовые функции. Введение
- •3.1. Явление Гиббса.
- •3.2. Весовые функции.
- •Литература
- •Лекция 7. Нерекурсивные частотные цифровые фильтры Введение
- •7.1. Общие сведения.
- •7.2. Идеальные частотные фильтры.
- •7.3. Конечные приближения идеальных фильтров.
- •7.4. Гладкие частотные фильтры.
- •7.5. Дифференцирующие цифровые фильтры.
- •7.6. Альтернативные методы расчета нцф.
- •Литература
- •Лекция 8. Z-преобразование сигналов и системных функций Введение
- •8.2. Пространство z-полиномов.
- •8.3. Свойства z-преобразования.
- •8.4. Обратное z-преобразование.
- •8.5. Применение z – преобразования.
- •Литература
- •Лекция 9. Рекурсивные цифровые фильтры Введение
- •9.1. Принципы рекурсивной фильтрации.
- •9.2. Разработка Рекурсивных цифровых фильтров [43].
- •9.3. Режекторные и селекторные фильтры.
- •9.4. Билинейное z-преобразование.
- •9.5. Типы рекурсивных частотных фильтров.
- •Литература
- •Лекция 10. Рекурсивные частотные цифровые фильтры Введение
- •10.1. Низкочастотный фильтр Баттеруорта.
- •10.2. Высокочастотный фильтр Баттеруорта.
- •10.3. Полосовой фильтр Баттеруорта.
- •10.4. Фильтры Чебышева.
- •10.5. Дополнительные сведения.
- •Литература
- •Тема 11. Адаптивная цифровая фильтрация данных Введение
- •11.1. Общие сведения об адаптивной цифровой фильтрации.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.3. Статистическая группировка полезной информации.
- •Литература
- •Лекция 12. Оптимальные линейные цифровые фильтры. Введение
- •12.1. Случайные процессы и шумы.
- •12.2. Критерии построения оптимальных фильтров.
- •12.3. Фильтр Колмогорова-Винера.
- •12.4. Оптимальные фильтры сжатия сигналов.
- •12.5. Фильтр обнаружения сигналов.
- •12.6. Энергетический фильтр.
- •Литература
- •Лекция 13. Деконволюция цифровых сигналов введение
- •13.1. Понятие деконволюции.
- •13.2. Инверсия импульсного отклика фильтра.
- •13.3. Оптимальные фильтры деконволюции.
- •13.4. Рекурсивная деконволюция.
- •13.5. Фильтры сжатия сигналов
- •Литература
9.5. Типы рекурсивных частотных фильтров.
Рекурсивные цифровые фильтры, как и нерекурсивные, не могут обеспечить реализацию идеальной частотной характеристики со скачкообразными переходами от полосы пропускания к полосе подавления. Поэтому на этапе решения аппроксимационной задачи необходимо определить передаточную функцию H() фильтра, которая обеспечивает воспроизведение необходимой амплитудно-частотной характеристики (АЧХ) с требуемой точностью. Требования к фазочастотной характеристике (ФЧХ) частотных фильтров, как правило, не задаются, т. к. это приводит к резкому усложнению решения задачи. Специальные требования к форме ФЧХ обычно реализуются после расчета фильтров с заданной АЧХ путем контроля полученной при этом ФЧХ и разработкой, при необходимости, дополнительных корректоров ФЧХ.
Синтез рекурсивных фильтров, как и НЦФ, выполняется на базе фильтров низких частот (ФНЧ). Другие типы фильтров (ФВЧ - высоких частот и ПФ - полосовые) образуются на основе ФНЧ путем частотного преобразования.
Аппроксимационная задача низкочастотного фильтра. В качестве основных исходных данных для решения аппроксимационных задач принимаются граничные частоты p - полосы пропускания, и s – начала полосы подавления сигнала. Как правило, задаются также допуски Ар - на максимальное значение неравномерности в полосе пропускания, и Аs – на максимальное отклонение АЧХ от нуля в полосе подавления (уровень шума фильтра). Разность между граничными частотами p и s будет определять ширину переходной зоны. Типичный пример задания формы АЧХ приведен на рис. 9.5.1. В допустимой зоне передаточной функции условно показана возможная форма АЧХ, удовлетворяющая заданным условиям.
Рис. 9.5.1. Частотная
характеристика ФНЧ.
Передаточная функция. При решении аппроксимационной задачи амплитудно-частотная характеристика фильтра обычно задается в действительной аналитической форме - виде квадрата передаточной функции, нормированной по амплитуде и граничной частоте передачи:
|H(W)|2 = H(W)·H*(W) = 1/(1+An(W)), (9.5.1)
где Аn(W) - многочлен n-го порядка, W - нормированная частота (например, W = /p). Вид многочлена Аn(W) выбирается таким образом, чтобы выполнялось условие: Аn(W) << 1 при 0<W<1, что обеспечивает |H(W)|2 1, и An(W) >> 1 при W>1, соответственно |H(W)|2 0. Крутизна переходных зон фильтра устанавливается величиной порядка фильтра (чем больше значение n, тем больше крутизна переходных зон).
По знаменателю правой части выражения (9.5.1) достаточно просто могут быть определены комплексные полюса передаточной функции в p-области преобразования Лапласа и соответствующим комбинированием и объединением комплексно-сопряженных полюсов получены передаточные функции в виде биквадратных блоков при четном порядке, и с одним линейным блоком при нечетном порядке:
H(p) = G
Вn(p),
n-четное, (9.5.2)
H(p) =
Вn(р),
n-нечетное, (9.5.3)
где Вn(р) выражается в форме:
Вn(p) = 1/[(p-pn)(p-pn*)] = 1/(p2-2 anp+bn). (9.5.4)
Рис. 9.5.2. АЧХ фильтра
Баттеруорта.