
- •Лекция 1. Введение в цифровую обработку сигналов Введение
- •1.1. Предисловие к цифровой обработке сигналов [1i].
- •1.2. Ключевые операции цифровой обработки.
- •1.3. Области применения цифровой обработки.
- •Литература
- •Лекция 2. Цифровые фильтры обработки одномерных сигналов. Введение
- •2.1. Цифровые фильтры.
- •2.1.6. Интегрирующий рекурсивный фильтр.
- •2.2. Импульсная реакция фильтров.
- •2.3. Передаточные функции фильтров.
- •2.4. Частотные характеристики фильтров.
- •2.5. Структурные схемы цифровых фильтров.
- •Литература
- •Лекция 3. Фильтры сглаживания. Метод наименьших квадратов. Введение
- •3.1. Фильтры мнк 1-го порядка.
- •3.3. Фильтры мнк 4-го порядка.
- •3.4. Расчет простого фильтра по частотной характеристике.
- •Литература
- •Лекция 4. Разностные фильтры и фильтры интегрирования. Введение
- •4.1. Разностные операторы.
- •4.2. Интегрирование данных.
- •Литература
- •Лекция 5. Фильтрация случайных сигналов Введение
- •5.1. Фильтрация случайных сигналов.
- •5.2. Спектры мощности случайных сигналов.
- •Литература
- •Лекция 6. Весовые функции. Введение
- •3.1. Явление Гиббса.
- •3.2. Весовые функции.
- •Литература
- •Лекция 7. Нерекурсивные частотные цифровые фильтры Введение
- •7.1. Общие сведения.
- •7.2. Идеальные частотные фильтры.
- •7.3. Конечные приближения идеальных фильтров.
- •7.4. Гладкие частотные фильтры.
- •7.5. Дифференцирующие цифровые фильтры.
- •7.6. Альтернативные методы расчета нцф.
- •Литература
- •Лекция 8. Z-преобразование сигналов и системных функций Введение
- •8.2. Пространство z-полиномов.
- •8.3. Свойства z-преобразования.
- •8.4. Обратное z-преобразование.
- •8.5. Применение z – преобразования.
- •Литература
- •Лекция 9. Рекурсивные цифровые фильтры Введение
- •9.1. Принципы рекурсивной фильтрации.
- •9.2. Разработка Рекурсивных цифровых фильтров [43].
- •9.3. Режекторные и селекторные фильтры.
- •9.4. Билинейное z-преобразование.
- •9.5. Типы рекурсивных частотных фильтров.
- •Литература
- •Лекция 10. Рекурсивные частотные цифровые фильтры Введение
- •10.1. Низкочастотный фильтр Баттеруорта.
- •10.2. Высокочастотный фильтр Баттеруорта.
- •10.3. Полосовой фильтр Баттеруорта.
- •10.4. Фильтры Чебышева.
- •10.5. Дополнительные сведения.
- •Литература
- •Тема 11. Адаптивная цифровая фильтрация данных Введение
- •11.1. Общие сведения об адаптивной цифровой фильтрации.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.3. Статистическая группировка полезной информации.
- •Литература
- •Лекция 12. Оптимальные линейные цифровые фильтры. Введение
- •12.1. Случайные процессы и шумы.
- •12.2. Критерии построения оптимальных фильтров.
- •12.3. Фильтр Колмогорова-Винера.
- •12.4. Оптимальные фильтры сжатия сигналов.
- •12.5. Фильтр обнаружения сигналов.
- •12.6. Энергетический фильтр.
- •Литература
- •Лекция 13. Деконволюция цифровых сигналов введение
- •13.1. Понятие деконволюции.
- •13.2. Инверсия импульсного отклика фильтра.
- •13.3. Оптимальные фильтры деконволюции.
- •13.4. Рекурсивная деконволюция.
- •13.5. Фильтры сжатия сигналов
- •Литература
7.6. Альтернативные методы расчета нцф.
Метод прямого расчета НЦФ по частотной характеристики понятен и прост для применения. Недостаток метода – отсутствие гибкости. Он не позволяет проектировать фильтры с разной степенью неравномерности частотной характеристики в полосах пропускания и подавления, а степень неравномерности не зависит от количества членов фильтра и не может изменяться. Максимальные осцилляции частотной характеристики всегда наблюдаются в области полосовых границ и уменьшаются при удалении от них, но при близких границах могут наблюдаться явления интерференции осцилляций. Более гибкими в проектировании являются альтернативные методы: оптимизационные,
Оптимизационные методы позволяют проектировать экономные по размерам операторы фильтров с оптимальными (по Чебышеву) осцилляциями частотных характеристик. Они основаны на понятии полос равных колебаний.
Рис. 7.6.1. Оптимальный
фильтр низких частот
min[max(E(f))]
в полосе пропускания и в полосе подавления, при этом характеристика фильтра будет иметь равные колебания в пределах полос пропускания и подавления, а количество экстремумов колебаний у фильтров с линейной фазовой характеристикой обычно прямо связано с количеством коэффициентов фильтра (N+1)/2.
При расчете фильтра ключевым моментом является определение положения частот экстремумов, которое выполняется итерационным алгоритмом Ремеза, после чего по положениям экстремумов задается частотная характеристика фильтра и определяются его коэффициенты. Методика расчета оптимальных фильтров подробно с примерами, в том числе в среде Matlab, рассмотрена в работе /43/.
Метод частотной выборки представляет собой вариант метода расчета фильтра по частотной характеристике без применения весовых функций и может применяться для расчетов как частотно-избирательных фильтров, так и фильтров с произвольной частотной характеристикой.
В основе метода лежит непосредственное задание частотной характеристики фильтра в цифровой форме с последующим подбором переходных зон под требуемые характеристики фильтра по величине допустимых осцилляций в полосе пропускания и подавления. Расчет желательно вести в интерактивном режиме, например, в среде Mathcad. В качестве примера приведем расчет низкочастотного фильтра.
Рис. 7.6.2. Задание
параметров НЦФ.
Рис. 7.6.3. Подбор
отсчетов переходной зоны НЦФ.
Рис. 7.6.4. НЦФ с
точкой подбора на границе.
При использовании данного метода может использоваться и комбинированный подход: задание на частотной характеристике избыточного количества точек, отладка параметров фильтра по трем и более точкам в переходных зонах, а затем усечение оператора фильтра с применением весовых функций.
Метод частотных выборок допускает также рекурсивную реализацию фильтров.