
- •1 Микроконтроллеры avr. Назначение и внутренняя структура
- •1.1 Структура микроконтроллеров avr
- •1.2 Периферийные устройства микроконтроллеров avr
- •1.2.1 Порты ввода/вывода (I/o)
- •1.2.2 Прерывания (interrupts)
- •1.2.3 Таймеры/счетчики (timer/counters)
- •1.2.4 Сторожевой таймер (wdt)
- •1.2.5 Аналоговый компаратор (ac)
- •1.2.6 Аналого-цифровой преобразователь (a/d converter)
- •1.2.8 Последовательный периферийный интерфейс spi
- •1.2.9Двухпроводной последовательный интерфейс twi
- •1.2.10 Тактовый генератор
- •1.2.11 Сброс при снижении напряжения питания (bod)
- •2 Описание aTtiny2313
- •3 Способы генерации аналоговых сигналов
- •3.1 Генерация аналоговых сигналов с помощью шим
- •3.2 Генерация аналоговых сигналов с помощью r2r матрицы
- •4 Разработка программ генерации синусоидального напряжения
- •4.1 Хранение значений синусоиды в памяти программ
2 Описание aTtiny2313
ATtiny2313 низкопотребляющий 8 битный КМОП микроконтроллер с RISC архитектурой. Выполняя команды за один цикл, ATtiny2313 достигает производительности 1 MIPS при частоте задающего генератора 1 МГц, что позволяет разработчику оптимизировать отношение потребления к производительности.
AVR ядро объединяет богатую систему команд и 32 рабочих регистра общего назначения. Все 32 регистра непосредственно связаны с арифметико-логическим устройством (АЛУ), что позволяет получить доступ к двум независимым регистрам при выполнении одной команды. В результате эта архитектура позволяет обеспечить в десятки раз большую производительность, чем стандартная CISC архитектура.
ATtiny2313 имеет следующие характеристики: 2 КБ программируемой в системе Flash память программы, 128 байтную EEPROM память данных, 128 байтное SRAM (статическое ОЗУ), 18 линий ввода - вывода общего применения, 32 рабочих регистра общего назначения, однопроводный интерфейс для встроенного отладчика, два гибких таймера/счетчика со схемами сравнения, внутренние и внешние источники прерывания, последовательный программируемый USART, универсальный последовательный интерфейс с детектором стартового условия, программируемый сторожевой таймер со встроенным генератором и три программно инициализируемых режима пониженного потребления. В режиме Idle останавливается ядро, но ОЗУ, таймеры/счетчики и система прерываний продолжают функционировать. В режиме Power-down регистры сохраняют свое значение, но генератор останавливается, блокируя все функции прибора до следующего прерывания или аппаратного сброса. В Standby режиме задающий генератор работает, в то время как остальная часть прибора бездействует. Это позволяет очень быстро запустить микропроцессор, сохраняя при этом в режиме бездействия мощность.
Прибор изготовлен по высокоплотной энергонезависимой технологии изготовления памяти компании Atmel. Встроенная ISP Flash позволяет перепрограммировать память программы в системе через последовательный SPI интерфейс или обычным программатором энергонезависимой памяти. Объединив в одном кристалле 8битное RISC ядро с самопрограммирующейся в системе Flash памятью, ATtiny2313 стал мощным микроконтроллером, который дает большую гибкость разработчикам микропроцессорных систем.
ATtiny2313 поддерживается различными программными средствами и интегрированными средствами разработки, такими как компиляторы C, макроассемблеры, программные отладчики/симуляторы, внутрисхемные эмуляторы и ознакомительные наборы.
3 Способы генерации аналоговых сигналов
3.1 Генерация аналоговых сигналов с помощью шим
Для генерации импульсов используется режим быстрой ШИМ с переменным заполнением импульсов на выходе OC1A (PB1). Для получения из цифрового ШИМ-сигнала сигнала синусоидальной формы на выходе должен быть предусмотрен аналоговый фильтр.
Преимущества высокоскоростного ШИМ расширение частотного диапазона аналогового выходного сигнала и возможность применения более компактных и недорогих компонентов в фильтре за счет более высокой частоты.
ШИМ в сочетания с аналоговым фильтром может использоваться для генерации аналоговых выходных сигналов, т.е. в качестве цифро-аналогового преобразователя (ЦАП). В качестве основы используется последовательность прямоугольных импульсов с постоянным периодом следования (фиксированная частота преобразования). Для генерации различных аналоговых уровней регулируется заполнение импульсов и, таким образом, изменяется длительность импульсов. Если необходимо сформировать высокий аналоговый уровень, то длительность импульса увеличивают и наоборот.
Усреднение аналогового сигнала за один период (с помощью аналогового фильтра) позволяет сгенерировать аналоговый сигнал. При заполнении импульсов 50% аналоговый сигнал равен половине напряжения питания, а при 75%-ом заполнении импульсов аналоговый сигнал равен 75% от напряжения питания.
Аналоговый ФНЧ можно выполнить с помощью простого пассивного RC-фильтра. Фильтр удаляет несущую высокую частоту ШИМ и, таким образом, формирует аналоговый сигнал. Настроечная частота фильтра должна быть выбрана достаточно высокой, чтобы не исказить форму аналогового сигнала. В то же время настроечная частота должна быть достаточно низкой для минимизации пульсаций от несущей частоты ШИМ.
Рисунок 2 Низкочастотный RC-фильтр
Если аналоговый сигнал поступает к низкоомному входу, то между выходом фильтра и нагрузкой должен быть включен буферный усилитель. Это предотвращает нагружение конденсатора и появление пульсирующего напряжения.
В микроконтроллерах AVR для генерации ШИМ-сигналов используются таймеры-счетчики. Для изменения несущей частоты ШИМ изменяется частота синхронизации таймера и вершина счета. Повышение частоты синхронизации и/или снижение вершины счета приводят к повышению частоты переполнения таймера и, как следствие, увеличивается частота ШИМ. Максимальной разрешающей способности (вершина счета 255) соответствует максимальная частота ШИМ 250 кГц. Дальнейшее увеличение частоты ШИМ возможно путем уменьшения разрешающей способности, но в этом случае сокращается количество шагов при установке заполнения импульсов от 0 до 100%.
Изменение содержимого регистра сравнения (OCR) влияет на заполнение импульсов. Увеличение значения OCR увеличивает заполнение импульсов. До достижения счетчиком значения из регистра OCR ШИМ-выход находится в высоком состоянии, затем переходит в низкое состояние до достижения вершины счета, после чего счетчик переходит в нулевое состояние и цикл повторяется. Такой способ генерации у AVR-микроконтроллеров получил название быстрой ШИМ.
Рисунок 3 Значения счетчика и ШИМ-выход
При использовании высокочастотной ШИМ для генерации аналоговых сигналов ширина аналоговых уровней зависит от разрешающей способности ШИМ. Чем выше несущая частота, тем более просто ее подавить и тем самым минимизировать уровень пульсаций. Таким образом, необходимо оптимизировать соотношение разрешающей способности и несущей частоты.