- •Предмет материаловедения. Влияние типа связи на структуру и свойства кристаллов.
- •Кристаллическое строение материалов. Элементарная кристаллическая ячейка. Типы кристаллических решеток.
- •Полиморфизм железа.
- •Дефекты кристаллического строения и их влияние на прочность металлов и сплавов.
- •Классификация металлов. Распространенность в природе. Характерные свойства металлов.
- •Виды деформаций. Механизм упругой и пластической деформации. Характеристики упругости и пластичности.
- •Энергетические условия и механизм процесса кристаллизации металлов и сплавов.
- •Диаграмма растяжения металлов. Характеристики упругости, пластичности и прочности материалов, определяемые при статическом нагружении.
- •Динамическое нагружение материалов. Ударная вязкость. Хрупкое и вязкое разрушение металлов.
- •Твердость металлов и сплавов. Методы определения твердости.
- •Деформационное упрочнение металлов (наклеп). Влияние нагрева на структуру и свойства деформированного металла (возврат и рекристаллизация).
- •Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии. Метод построения. Характерные линии и точки, фазовый состав областей.
- •Правило отрезков.
- •Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии. Характерные линии и точки. Фазовый состав областей.
- •Диаграмма состояния сплавов с устойчивым химическим соединением. Характерные линии и точки. Фазовый состав областей.
- •Диаграмма состояния для сплавов образующих механические смеси из чистых компонентов. Характерные линии и точки. Фазовый состав областей.
- •Превращения в сталях при нагреве и медленном охлаждении.
- •Отжиг стали. Назначение, стадии. Виды отжига.
- •Закалка стали. Назначение, стадии. Выбор температуры закалки для до- и заэвтектоидных сталей.
- •Отпуск стали. Назначение, стадии. Виды отпуска. Влияние тем-пературы отпуска на свойства стали.
- •Цементация стали
- •Углеродистые стали. Состав, влияние компонентов на свойства стали. Раскисление стали. Классификация углеродистых сталей.
- •Углеродистые стали обыкновенного качества. Классификация, маркировка, механические свойства, применение.
- •Углеродистые стали качественные и высококачественные. Классификация, маркировка, механические свойства, применение.
- •Чугуны. Состав. Достоинства и недостатки. Классификация, маркировка и области применения.
- •Легированные стали. Классификация по содержанию легирующих элементов, по составу, по равновесной структуре.
- •Химическая коррозия металлов. Критерий стойкости металлов к химической коррозии.
- •Электрохимическая коррозия металлов. Нормальный потенциал металлов. Влияние различных факторов на стойкость металлов к электрохимической коррозии.
- •Определить тип сплава (углеродистая сталь, легированная сталь, чугун, цветные металлы и сплавы, металлокерамический сплав и др.), химический состав и назначение:
Легированные стали. Классификация по содержанию легирующих элементов, по составу, по равновесной структуре.
Легированные стали – это сплавы на основе железа, в состав которых специально введены химические элементы, обеспечивающие ему требуемую структуру и свойства. Более применяемым является название с указанием легирующих элементов, например стали хромистые, хромоникелевые, хромоникельмолибденовые и др.
Стали классифицируются по нескольким признакам.
1. По структуре после охлаждения на воздухе выделяются три основных класса сталей:
перлитный;
мартенситный;
аустенитный
Стали перлитного класса характеризуются малым содержанием легирующих элементов; мартенситного – более значительным содержанием; аустенитного – высоким содержанием легирующих элементов.
2. По степени легирования (по содержанию ЛЭ):
низколегированные – 2,5…5 %;
среднелегированные – до 10 %;
высоколегированные – более 10%.
3. По числу легирующих элементов:
трехкомпонентные (железо, углерод, легирующий элемент);
четырехкомпонентные (железо, С, два ЛЭ) и так далее.
4. По составу: никелевые, хпомистые, хромоникелевые, хромоникельмолибденовые и так далее (признак– наличие тех или иных легирующих элементов).
5. По назначению:
конструкционные;
инструментальные (режущие, мерительные, штамповые);
стали и сплавы с особыми свойствами (резко выраженные свойства – нержав., жаропр. и термоуст., износоустойчивые, с особыми магнитными и электрич. свойствами).
Маркировка легированных сталей.
Легированные стали маркируют цифрами и буквами. Первая цифра указывает на процентное содержание углерода в сотых долях. Следующей далее буквой указывают на прочность элемента, который образуется этой буквой. Если за буквой стоит цифра она обозначает в целых проценты. Если цифры нет, то содержимое этого элемента порядка 1%.
Химическая коррозия металлов. Критерий стойкости металлов к химической коррозии.
Коррозией называют разрушение материалов под влиянием окружающей среды в результате ее химического или электрохимического воздействия. Наиболее распространенным видом химической коррозии является газовая коррозия (особенно усиливающаяся при высоких температурах), т. е. процесс взаимодействия с кислородом или активными газовыми средами (галоиды, сернистый газ, сероводород, пары серы, диоксид углерода и т. д.). При газовой коррозии разрушаются такие ответственные узлы и детали, как лопатки газовых турбин, сопла реактивных двигателей, арматура печей. Критерием коррозионной стойкости является скорость коррозии (Vкор, мм/год).
Электрохимическая коррозия металлов. Нормальный потенциал металлов. Влияние различных факторов на стойкость металлов к электрохимической коррозии.
Электрохимическая коррозия — наиболее распространенный вид коррозии металлов. При электрическом контакте двух металлов, обладающих разными электродными (электрохимическими) потенциалами и находящихся в электролите, образуется гальванический элемент. Поведение металлов зависит от значения их электродного потенциала. Металл, имеющий более отрицательный электродный потенциал (анод), отдает положительно заряженные ионы в раствор и растворяется (рис. 10.1). Избыточные электроны перетекают по внешней цепи в металл, имеющий более высокий электродный потенциал (катод). Катод при этом не разрушается, а электроны из него удаляются во внешнюю среду. Чем ниже электродный потенциал металла по отношению к стандартному водородному потенциалу, принятому за нулевой уровень, тем легче металл отдает ионы в раствор, тем ниже его коррозионная стойкость.
