Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсач женя.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
459.26 Кб
Скачать

1.1 Условия возникновения и развития пожара

Большую роль при изучении и практическом решении вопросов противопожарной защиты играют понятия и определения, поскольку они позволяют различным специалистам однозначно понимать сущность процессов, происходящих при горении веществ и их тушении, а также требований правил пожарной безопасности.

Горение — химическая реакция окисления, сопровождающаяся выделением тепла и излучением света.

Пожар — неконтролируемое горение, развивающееся во времени и пространстве.

Загорание — неконтролируемое горение вне специального очага, не причинившее материального ущерба.

Пожарная опасность — возможность возникновения и (или) развития пожара, сопровождающегося последствиями.

Зажигание — воздействие источника зажигания на материал или вещество, приводящее к возникновению горения.

Источник зажигания — носитель энергии (например, горящее или накаленное тело, электрический разряд), обладающий ее запасом и температурой, достаточными для инициирования горения.

Самовозгорание — возникновение горения без воздействия источника зажигания.

Причина пожара — явление или обстоятельство, непосредственно обусловливающее возникновение пожара (загорания).

Расследование причины пожара — действия, направленные на установление обстоятельств, при которых возникло неконтролируемое горение, развившееся затем в пожар. Эти действия включают в себя определение очага пожара (места первоначального возникновения горения), источника зажигания и условий, способствовавших развитию и распространению пожара. Расследование причины пожара должно заканчиваться разработкой мероприятий, направленных на предотвращение подобных случаев пожара.

Под горением понимается совокупность физических и химических процессов, основой которых является быстропротекающая реакция окисления, сопровождающаяся выделением значительного количества тепла и излучением света. На большинстве пожаров в основе горения лежат реакции соединения горючих веществ с кислородом воздуха, и только в случаях, когда горят пиротехнические изделия и некоторые другие материалы, горение происходит за счет кислорода, содержащегося в молекуле горючего вещества, или кислорода окислителя. Интенсивность горения зависит от агрегатного состояния горючих веществ, от степени смешиваемости их с окислителем, от количества негорючих компонентов, входящих в состав горючего вещества, и других факторов. С усилением степени размельченности или степени распыла горючесть веществ возрастает. Так, кусок магния трудно воспламеняется от открытого огня. Тот же кусок, превращенный в порошок, горит со взрывом.

Горение может возникать не только при совмещении горючего вещества с окислителем и источником зажигания, но и при других обстоятельствах. Для протекания процесса горения в воздухе необходимы горючее вещество, кислород (воздух) и источник зажигания. Горючее вещество и кислород — реагирующие вещества — составляют горючую систему, а источник зажигания вызывает в ней реакцию окисления. При установившемся горении источником зажигания служит тепло зоны реакции.

В общем случае условия возникновения горения могут быть разделены на две группы: необходимые и достаточные. Необходимые условия — это наличие горючего вещества, окислителя и источника зажигания. Однако соблюдение этих условий еще не означает, что горение возникнет. Например, в жилой квартире имеется горючее вещество (мебель, одежда ч т. п.), окислитель (кислород воздуха) и источник зажигания (огонь газовой плиты, огонь сигареты и т.п.), однако, как правило, горение не возникает. Достаточные условия — это одновременное совмещение горючего вещества, источника зажигания и окислителя, а также непрерывное поступление окислителя в зону горения и удаление из нее продуктов горения. Роль и значение этих условий зависят от физико-химических характеристик горючих веществ, энергетических характеристик источника зажигания, природы окислителя и других факторов.

Как правило, процесс возникновения пожара является результатом последовательно связанных между собой действий людей. Почему возникновение пожара обязательно нужно связывать с деятельностью людей? Дело в том, что, с одной стороны, человек в состоянии предотвратить возникновение пожара, а с другой, — практически все пожары связаны с его деятельностью. Практика свидетельствует, что к пожарам приводят: технические, организационные и иные действия, которые в рамках добросовестного заблуждения не учитывают требований пожарной безопасности, что устанавливается лишь в ходе последующего расследования;

халатное отношение к выполнению известных и понятных правил пожарной безопасности.

Создание условий для возникновения пожара в рамках добросовестного заблуждения происходит, как правило, при:

отсутствии сведений о пожарной опасности технологических процессов, агрегатов, операций, веществ и материалов и т. п.;

некомпетентности лица, которому поручено выполнение работ, в вопросах пожарной безопасности.

Халатное отношение к выполнению известных и понятных правил пожарной безопасности, приводящее к созданию условий для возникновения пожара, выражается чаще всего в виде:

отсутствия или низкого уровня трудовой и производственной дисциплины;

уклонения под тем или иным предлогом от выполнения требований государственного пожарного надзора;

низкой требовательности лиц, непосредственно отвечающих за пожарную безопасность объекта.

Приведенное разделение причин, создающих условия для возникновения пожаров, не претендует на абсолютную точность, но позволяет разграничить добросовестное заблуждение от преднамеренности, техническую неграмотность от недисциплинированности, беспринципность и слабоволие от неосторожности и т. п.

В чем выражается конкретно деятельность людей, приводящая к созданию условий для возникновения пожара? Ответ на этот вопрос следует искать в приведенном определении пожара, поскольку возникновение неуправляемого горения является последней стадией процесса создания условий для возникновения пожара, в ходе которого происходит совмещение горючего и источника зажигания. Следовательно, ответ на поставленный вопрос может быть один: всякая деятельность, приводящая к накоплению, размещению и применению горючего такого вида, количества и качества, когда случайное занесение источника зажигания ведет к возникновению неуправляемого горения, или использование с нарушением правил эксплуатации технически неисправных или запрещенных источников тепловой энергии обязательно ведет к возникновению загорания (пожара).

Для отопления помещений использовалась самодельная теплогенерирующая установка (ТГУ). Администрацией объекта для обслуживания ТГУ привлекались лица, не подготовленные к данной работе. Пожар был обнаружен дежурным теплогенераторщиком, когда горела солярка в поддоне ТГУ. Не выключив установку и не вызвав пожарную часть, он принялся тушить огонь песком, но неудачно. Через некоторое время огонь достиг перекрытия, охватил склад электрооборудования, вулканизационную и вышел на покрытие. Примерно через час от начала обрушилось совмещенное покрытие здания блока постов на площади 1600 м2, а еще через полчаса произошло повторное обрушение на площади 620 м2. Тушение пожара продолжалось около 5 ч.

Из-за объективных и субъективных причин число пожаров от электротехнических причин ежегодно увеличивается в среднем на 2,7 %.

Последствия пожаров во многом зависят от причин и условий, способствующих их распространению или препятствующих тушению. По статистическим данным известно, что число пожаров, получивших распространение из-за позднего сообщения о пожаре, составляет около 48 %, а в результате непринятия мер по тушению до прибытия пожарных подразделений — около 4 % - Это подчеркивает необходимость знания людьми (особенно занимающимися обслуживанием электрооборудования) последовательности действий при обнаружении и тушении пожара. В этой связи важно получить необходимый объем информации о способах и средствах тушения пожаров.

2.

Газовое пожаротушение — это вид пожаротушения, при котором для тушения возгораний и пожаров применяются газовые огнетушащие составы. Автоматическая установка газового пожаротушения обычно состоит из баллонов или емкостей для хранения газового огнетушащего состава (ГОС), газа, который хранится в этих баллонах (емкостях), узлов управления, трубопроводов и насадок, обеспечивающих доставку и выпуск газа в защищаемое помещение, прибора приемно-контрольного и пожарных извещателей.

В последней четверти 19-го столетия углекислый газ стали применять за рубежом как огнетушащее вещество. Этому предшествовало получение сжиженной двуокиси углерода (СО2) М. Фарадеем в 1823 г. В начале 20-го века в Германии, Англии и США начали применяться углекислотные установки пожаротушения, значительное их количество появилось в 30-х годах. После Второй мировой войны за рубежом начали применяться установки с использованием изотермических резервуаров для хранения СО2 (последние получили название установки пожаротушения двуокисью углерода низкого давления).

Хладоны (галоны) являются более современными газовыми ОТВ. За рубежом в начале 20-го века галон 104, а затем в 30-х годах галон 1001 (бромистый метил) весьма ограничено применялись для пожаротушения, преимущественно в ручных огнетушителях. В 50-х в США проведены исследовательские работы, которые позволили предложить к применению в установках галон 1301 (трифторбромметан).

Первые отечественные установки газового пожаротушения (УГП) появились в середине 30-х годов для защиты кораблей и судов. В качестве газового ОТВ (ГОТВ) использовалась двуокись углерода. Первая автоматическая УГП применена в 1939 г. для защиты турбогенератора ТЭЦ. В 1951—1955 гг. разработаны батареи газового пожаротушения с пневмопуском (БАП) и электропуском (БАЭ). Применен вариант блочного исполнения батарей с помощью наборных секций типа СН. С 1970 г. в батареях используется запорно-пусковое устройство ГЗСМ.

В последние десятилетия широко применяются автоматические установки газового пожаротушения, использующие

озонобезопасные хладоны — хладон 23, хладон 227еа, хладон 125.

При этом хладон 23 и хладон 227еа применяются для защиты помещений в которых находятся, или могут находится люди.

Хладон 125 применяется в качестве огнетущащего вещества для защиты помещений без постоянного пребывания людей.

Двуокись углерода широко применяется для защиты архивов и денежных хранилищ.

Газы,применяемые при тушении.

В качестве огнетушащих веществ для тушения используются газы, перечень которых определен в Своде правил СП 5.13130.2009 «Установки пожарной сигнализации и пожаротушения автоматические» (пункт 8.3.1).

Это следующие газовые огнетушащие вещества: хладон 23, хладон 227еа, хладон 125, хладон 218, хладон 318Ц, азот, аргон, инерген, двуокись углерода, шестифтористая сера.

Применение газов, которые не входят в указанный перечень, разрешается только по дополнительно разработанным и согласованным нормам (техническим условиям) для конкретного объекта.

Газовые огнетушащие вещества по принципу пожаротушения классифицируют на две группы:

Первая группа ГОТВ — ингибиторы (хладоны). Они имеют механизм тушения, основанный на химическом

ингибировании (замедлении) реакции горения. Попадая в зону горения, эти вещества интенсивно распадаются

с образованием свободных радикалов, которые вступают в реакцию с первичными продуктами горения.

При этом происходит снижение скорости горения до полного затухания.

Огнетущащая концентрация хладонов в несколько раз ниже, чем для сжатых газов и составляет от 7 до 17 объемных процентов.

Хладоны, рекомендованные в Своде правил СП 5.13130.2009 к применению,

а именно, хладон 23, хладон 125, хладон 227еа являются озононеразрушающими.

Озоноразрушающий потенциал (ODP) хладона 23, хладона 125 и хладона 227еа равен 0.

Вторая группа — это разбавляющие атмосферу газы. К ним относятся такие сжатые газы, как аргон, азот, инерген.

Для поддержания горения необходимым условием является наличие не менее 12 % кислорода. Принцип разбавления атмосферы состоит в том, что при вводе сжатого газа (аргона, азота, инергена) в помещении содержание кислорода снижается до значения менее 12 %, то есть создаются условия, не поддерживающие горение.

Сжиженные газовые огнетушащие составы

Сжиженный газ хладон 23 применяется без газа-вытеснителя.

Хладоны 125, 227еа, 318Ц для обеспечения транспортировки по трубной разводке в защищаемое помещение требуют подкачки газом-вытеснителем.

Двуокись углерода

Хладон23 (трифторметан)- легкий газ без цвета и запаха. В модулях находится в жидкой фазе. Обладает высоким давлением собственных паров (48 КгС/кв.см), не требует наддува газом-вытеснителем. Способен в нормативное время (10/15 сек.) создавать нормативную огнетушащую концентрацию в помещениях, удаленных от модулей с ГОТВ на расстояние более 20 метров по вертикали и более 100 метров по горизонтали. Это его качество позволяет создавать оптимальные системы пожаротушения объектов с большим количеством защищаемых помещений путем создания централизованной станции газового пожаротушения. Экологически безопасен (ODP=0). Рекомендуется для защиты помещений с возможным пребыванием людей. ПДК = 50 %, а пожаротушащая концентрация — 14,6 %. Если происходит выпуск хладона 23 в помещение, из которого не эвакуировались (по каким-то причинам) люди, то для их здоровья ущерб нанесен не будет!

Хладон 125

• Хладон — 125 ХП • Хладон — 125 ХП • Хладон — 125 ХП

— химическое название — пентафторэтан, озонобезопасный, символическое обозначение — R — 125 ХП. — бесцветный газ, сжиженный под давлением; негорюч и малотоксичен. — предназначен в качестве хладагента и пожаротушащего вещества.

Основные свойства:

01.

Относительная молекулярная масса:

120,02;

02.

Температура кипения при давлении 0,1 МПа, °С:

-48,5;

03.

Плотность при температуре 20°С, кг/м³:

1127;

04.

Критическая температура, °С:

+67,7;

05.

Критическое давление, МПа:

3,39;

06.

Критическая плотность, кг/м³:

3 529;

07.

Массовая доля пентафторэтана в жидкой фазе, %, не менее:

99,5;

08.

Массовая доля воздуха, %, не более:

0,02;

09.

Суммарная массовая доля органических примесей, %, не более:

0,5;

10.

Кислотность в пересчете на фтористоводородную кислоту в массовых долях, %, не более:

0,0001;

11.

Массовая доля воды, %, не более:

0,001;

12.

Массовая доля нелетучего остатка, %, не более:

0,01.

Хладон 318ц (R 318ц, перфторциклобутан) Формула: C4F8 Химическое название: октафторциклобутан Агрегатное состояние: газ без цвета со слабым запахом

Температура кипения −6,0° С (минус) Температура плавления −41,4° C (минус) Молекулярная масса 200,031 Озоноразрушающий потенциал (ОРП) ODP 0 Потенциал глобального потепления GWP 9100 ПДК р.з.мг/м3 р.з. 3000 млн-1 Класс опасности 4 Характеристика пожароопасности Трудногорючий газ. При соприкосновении с пламенем разлагается с образованием высокотоксичных продуктов Применение Пламегаситель, рабочее вещество в кондиционерах, тепловых насосах

Сжатые газовые огнетушащие составы (Азот, аргон, инерген)

Азот

Азот используется для флегматизации горючих паров и газов, для продувки и осушения емкостей и аппаратов от остатков газообразных или жидких горючих веществ. Баллоны со сжатым азотом в условиях развившегося пожара представляют опасность, так как возможен их взрыв вследствие понижения прочности стенок при высокой температуре и повышения давления газа в баллоне при нагревании. Мерой, предотвращающей взрыв, является выпуск газа в атмосферу. Если это сделать невозможно, баллон следует обильно орошать водой из укрытия[3].

Азот нельзя применять для тушения магния, алюминия, лития, циркония и других материалов, которые образуют нитриды, обладающие взрывчатыми свойствами. В этих случаях в качестве инертного разбавителя применяют аргон, значительно реже — гелий.

Инерген — дружественная по отношению к окружающей среде противопожарная система, действующий элемент которой состоит из газов, уже присутствующих в атмосфере. Инерген — инертный, то есть неразжиженный, нетоксичный и негорючий газ. Он состоит на 52 % из азота, на 40 % из аргона, и на 8 % из углекислого газа. Это значит, что он не наносит вред окружающей среде и не повреждает оборудование и другие предметы.

Метод тушения, заложенный в Инерген называется «замещение кислорода» — уровень кислорода в помещении падает и огонь гаснет.

  • В атмосфере Земли содержится приблизительно 20,9 % кислорода.

  • Метод замещения кислорода заключается в том, чтобы понизить уровень кислорода до приблизительно 15 %. При таком уровне кислорода огонь в большинстве случаев неспособен гореть и погаснет в пределах 30-45 секунд.

  • Отличительной особенностью Инерген является содержание в его составе 8 % углекислого газа.

Физиологически это выражается в способности организма человека перекачивать больший объём крови. В результате организм снабжается кровью также как если бы человек дышал обычным атмосферным воздухом.

Один газ замещается другим.

Иные

Также в качестве огнетушашего вещества может применяться пар, однако эти системы в основном применяются для тушения внутри технологического оборудования и трюмах судов.

Автоматические установки газового пожаротушения

Системы газового пожаротушения применяются в тех случаях, когда применение воды может вызвать короткое замыкание или иное повреждение оборудования — в серверных комнатах, хранилищах данных, библиотеках, музеях, на летательных аппаратах.

Автоматические установки газового пожаротушения должны обеспечивать:

  • своевременное обнаружение пожара автоматической установкой пожарной сигнализации, входящей в состав автоматической установки газового пожаротушения;

  • возможность задержки подачи газового огнетушащего вещества в течение времени, необходимого для эвакуации людей из защищаемого помещения;

  • создание огнетушащей концентрации газового огнетушащего вещества в защищаемом объёме или над поверхностью горящего материала за время, необходимое для тушения пожара.

В защищаемом помещении, а также в смежных, имеющие выход только через защищаемое помещение, при срабатывании установки должны включаться устройства светового (световой сигнал в виде надписей на световых табло «Газ — уходи!» и «Газ — не входить!») и звукового оповещения в соответствии с ГОСТ 12.3.046 и ГОСТ 12.4.009.

Система газового пожаротушения также входит как составная часть в системы подавления взрывов, используется для флегматизации взрывоопасных смесей.

Испытания автоматических установок газового пожаротушения

Испытания следует проводить:

  • перед сдачей установок в эксплуатацию;

  • в период эксплуатации не реже одного раза в 5 лет

Кроме того, масса ГОС и давление газа-вытеснителя в каждом сосуде установки следует проводить в сроки, установленные технической документацией на сосуды (баллоны, модули).

Испытания установок по проверке времени срабатывания, продолжительности подачи ГОС и огнетущащей концентрации ГОС в объёме защищаемого помещения не являются обязательными. Необходимость их экспериментальной проверки определяет заказчик или, в случае отступления от норм проектирования, влияющих на проверяемые параметры, должностные лица органов управления и подразделений Государственной противопожарной службы при осуществлении государственного пожарного надзора.

Установки газового (углекислотного) пожаротушения способны потушить пожар в любой точке объема защищаемого помещения. Газовое пожаротушение, в отличие от водяного, аэрозольного, пенного и порошкового, не вызывает коррозии защищаемого оборудования, а последствия его применения легко устранимы путем простого проветривания. Именно поэтому в последние годы газовое пожаротушение находит все больше сфер применения.

Наиболее эффективно и безопасно применение газовых установок пожаротушения:

- Газоперекачивающими и дизель-генераторными станциями, поскольку применение водяных и пенных систем приводит в дальнейшем к коррозии оборудования и необходимости проводить регламентные работы большого объема для перепуска станции после пожаротушения.

- Для защиты культурных ценностей в музеях, галереях, выставочных залах, запасниках и архивах. В хранилищах библиотек, архивов, запасников, как нигде требуется 100% объемное тушение при максимальном сохранении от влаги культурных ценностей.

- В различных пунктах диспетчерской связи, центрах спасения, в кабельных тоннелях и других местах, где велико скопление электрической проводки там, где применение водяных и пенных систем пожаротушения невозможно.

- На предприятиях, где установлены компьютеры, АТС, станки с ЧПУ и т.д., для защиты от пожара не только людей, производственных помещений, но и дорогостоящего оборудования. Только системы газового пожаротушения дают такую возможность.

- На складах, в покрасочных цехах, т.е. помещениях со взрывоопасной средой. Флегматизация взрывоопасных помещений систем газового пожаротушения предотвращает взрывы при возникновении пожаров.

- В денежных хранилищах, что позволяет сохранить не только само помещение, но и незатронутые огнем купюры.

Результатом создания создания газовых установок пожаротушения явилось снижение стоимости защиты помещений объемом свыше 1000 м3 установками газового пожаротушения.

Сертификационные испытания показали, что по качеству тепловой изоляции (суточному приросту давления) изотермического резервуара, времени срабатывания запорно-пускового устройства и температурного диапазона эксплуатации (от минус 40 °С до 50 °С) комплексы превышают лучшие зарубежные аналоги. Снижение температуры эксплуатации до минус 40 °С позволяет устанавливать их на открытой площадке (вне здания), что значительно снижает капитальные затраты.

Управление количеством выпускаемой двуокиси углерода может производиться двумя способами. По первому способу, традиционно используемому во многих аналогичных изделиях, управление выпуском заданного количества двуокиси углерода осуществляется по времени. По второму способу управление производится по потере массы модуля. Такой способ управления количеством поданной в защищаемое помещение двуокиси углерода осуществлен впервые. Второй способ управления является предпочтительным в связи с тем, что позволяет достаточно точно контролировать подачу двуокиси углерода в каждое защищаемое помещение.

Назначенный срок службы данных установок составляет 15 лет.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]