
- •Вопрос 1.
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6
- •Вопрос 6.1. Газообразные диэлектрические материалы
- •Вопрос 6.2.
- •Вопрос 6.3.1
- •Вопрос 6.3.2 По химическому составу диэлектрики разделяют на органические, элементоорганические.
- •Вопрос 6.3.2.1. Электроизоляционные бумаги и картоны
- •Вопрос 6.3.2.3 Каучуки и резины
- •Вопрос 6.3.2.4 Смолы и материалы на их основе - лаки, эмали, клеи и компаунды.
- •Вопрос 6.3.2.5 Флюсы
- •Вопрос 6.3.3. Диэлектрики на основе неорганических полимерных материалов
- •Вопрос 6.3.3.1.
- •Вопрос 8 Проводниковые материалы
- •Вопрос 8.1.2.
- •Вопрос 8.1.4.
- •Вопрос 8.1.5. Неметаллические проводящие материалы
- •Вопрос 8.1.6.
- •Вопрос 9. Полупроводниковые материалы
- •Вопрос 9.1.1
- •Вопрос 9.1.2 Гетероядерные полупроводниковые материалы различных типов.
- •Вопрос 9.1.4
- •Вопрос 9.1.5
- •Вопрос 10
Вопрос 8.1.4.
Контактные материалы подразделяются на разрывные, сколь
зящие и неподвижные.
К неподвижным контактам относятся цельнометаллические (сварные или паяные) зажимные (болтовые, винтовые) соединения. Цельнометаллические соединения должны отличаться не только механической прочностью, но и обеспечивать стабильный электрическийконтакт с малым переходным сопротивлением.
В качестве контактных материалов для слаботочных размыкающих контактов,кроме чистых тугоплавких металлов (вольфрамамолибдена), применяются благородные металлы (платина, золото,серебро), а также различныесплавы на их основе (золото–серебро,платина–рутений, платина–родий), металлокерамические композиции (например, Ag–CdO).Сильноточные размыкающиеконтакты изготовляются, как правило, из металлокерамических материалов, которые получают методом порошковой металлургии. Они включают в себя композиции на основе меди и серебра: серебро–оксид кадмия, серебро–оксид меди, медь–графит, серебро–никель, серебро–графит.Скользящие контакты должны дополнительно отличаться высокой стойкостью к истирающим нагрузкам. Наиболее высокими качествами обладают контактные пары, составленные из металлического и графитосодержащего материалов. Кроме низкого коэффициента
трения, графит и материалы на его основе отличаются большим напряжением дугообразования, поэтому износ контактов от искрениянезначителен.
Для скользящих контактов используются проводниковые бронзы и латуни, отличающиеся высокой механической прочностью, стойкостью к истирающим нагрузкам, упругостью, антифрикционными свойствами и стойкостью к атмосферной коррозии. Для изготовления коллекторных пластин часто используются твердая медь, а также медь, легированная серебром, и другие материалы.Металлокерамика применяется для изготовления контактов из порошков заготовок или пропиткой серебром, или медью предварительно прессованных пористых каркасов из вольфрама или вольфрамо никелевого сплава.
По физико химическим свойствам элементарные сверхпроводники (чистые металлы) можно разделить на мягкие (Hg, Sn, Pb, In) ижесткие (Та, Ti, Zr, Nb). Для мягких сверхпроводников характерны низкие температуры плавления и отсутствие внутренних механических напряжений, жесткие сверхпроводники отличаются наличием значительных внутренних напряжений. С позиций термодинамики сверхпроводниковые материалы принято делить на сверхпроводники I, II и III родов.
Для сверхпроводников I рода характерны скачкообразное изменение удельной теплоемкости и определенная температура перехода в сверхпроводящее состояние, которое может разрушиться уже при малых критических температурах и напряженности магнитного поля примерно 1 кА/м, что затрудняет их использование.
Сверхпроводники II рода отличаются тем, что переход в сверхпроводящее состояние у них осуществляется не скачком, а постепенно.
Для них характерны два критических значения магнитной индукции при температуре Ткр < Т0. Если магнитная индукция во внешнем поле начинает превышать значение нижней критической индукции,то происходит частичное проникновение магнитного поля во всю толщину сверхпроводящего образца.
К сверхпроводникам II рода из чистых металлов можно отнести ниобий Nb, ванадий V и технеций Те.
Сверхпроводники III рода включают в себя неидеальные сверхпроводники II рода (жесткие сверхпроводники). Для них характерно наличие крупных неоднородностей, возникающих при выделении другой фазы или пластичном деформировании. Дефекты структуры могут служить узлами закрепления вихрей (явление пининга), что значительно повышает допустимые токи. К сверхпроводникам IIIрода относятся в основном сплавы и химические соединения.химической формулой Bi2Sr2Ca2Cu3Oх, температура перехода которых достигает 158°С. Сверхпроводниковые материалы используют для создания сверх сильных магнитных полей в достаточно большой области пространства; для изготовления обмоток электрических машин и трансформаторов, обладающих малой массой и размерами, но очень высоким КПД сверхпроводящих кабелей для мощных линий передачи энергии, волноводов с очень малым затуханием, мощных накопителей
электрической энергии, устройств памяти и управления.
Криопроводники. К их числу относятся материалы, которые присильном охлаждении (ниже –173°С) приобретают высокую электрическую проводимость, но не переходят в сверхпроводящее состояние. Это объясняется тем, что при низкой температуре удельное сопротивление проводника обусловлено, как правило, нали
чием примесей и физическими дефектами решетки. Поскольку составляющая удельного сопротивления, обусловленная рассеиванием энергии за счет тепловых колебаний решетки, пренебрежимо мала, для криопроводников необходимо применять хорошо ото
жженный металл высокой чистоты, который обладает минимальным удельным сопротивлением в рабочем диапазоне температур от –240 до –190 °С. Минимальным сопротивлением при температуре жидкого азота,самого дешевого хладагента, обладает бериллий, однако он отличается плохой технологичностью, дорог и высокотоксичен. Более доступен и технологичен алюминий в качестве криопроводящего мате
риала (алюминий марки А999, содержащий примесей не более
0,001% при температуре жидкого гелия имеет удельное сопротивле
ние не более 1...2·10–6мкОм·м).