
- •21.Воздействие магнитного поля на движущие заряды. Сила Лоренца.
- •22.Ускорители заряженных частиц. Принцип работы, классификация. Из интернета, т.К. В лекциях не было!
- •Классификация ускорителей
- •23.Закон электромагнитной индукции
- •24.Магнитные свойства вещества. Диа-, пара- и ферромагнетики.
- •Деление веществ по магнитным свойствам:
- •Диамагнетики:
- •Парамагнетики:
- •Ферромагнетики:
- •Взаимодействие альфа- и бета-частиц с веществом.
- •Взаимодействие β-частиц с веществом:
- •Интенсивность рентгеновского излучения при взаимодействии бета-частиц с веществом:
- •Радиоактивность земной коры:
- •29. Особенности воздействия ионизирующих излучений на биологические объекты.
- •30. Единицы измерения ионизирующих излучений. Пределы доз облучения. Из интернета!
- •31. Основные способы регистрации ионизирующих излучений.
- •34.Принцип работы спектрометра при анализе органических веществ.
31. Основные способы регистрации ионизирующих излучений.
ИЗ ИНТЕРНЕТА!
К основным и наиболее часто применяемым методам регистрации относятся следующие: ионизационные, оптические (сцинтилляционные), химические и фотографические. Ионизационный метод основан на регистрации эффекта ионизации, т. е. на измерении величины заряда ионов, возникающих под действием ионизирующего излучения. Измерить ионизационный эффект можно при помощи электрического поля, которое препятствует рекомбинации ионов и придает им направленное движение к соответствующим электродам. В качестве детекторов используют ионизационные камеры, пропорциональные счетчики, счетчики Гейгера—Мюллера, полупроводниковые детекторы и др. Эти детекторы, кроме полупроводниковых, представляют собой наполненные газом баллоны с двумя вмонтированными электродами. К электродам подведено напряжение постоянного тока. Детектор включается в электрическую цепь. При прохождении ионизирующей частицы через газовую среду образуются ионы, которые собираются на электродах. Положительные ионы движутся к катоду, отрицательные — к аноду. В электрической цепи образуется ионизационный ток, который регистрируется измерителем тока. По значению этого тока можно судить об интенсивности излучения или отсчитывать число зарегистрированных частиц. Протекание тока наблюдается до тех пор, пока на газ действует излучение. В противном случае ток в цепи не протекает, так как газ является изолятором. Взаимодействуя с веществом, ядерное излучение наряду с ионизацией производит возбуждение атомов и молекул. Через некоторое время (в зависимости от вещества) возбужденные атомы и молекулы переходят в невозбужденное состояние с выделением энергии во внешнюю среду. У некоторых веществ (сернистый цинк, йодистый натрий, антрацен, стильбен, нафталин и др.) такой переход сопровождается испусканием энергии возбуждения в виде квантов видимого инфракрасного и ультрафиолетового света. Внешне это проявляется в виде вспышек света — сцинтилляций, которые можно зарегистрировать с помощью соответствующих приборов. На регистрации сцинтилляций, возникающих в определенных веществах при облучении их ионизирующими излучениями, и основаны оптические методы. Принцип работы сцинтилляционного детектора следующий: под действием излучений происходит ионизация и возбуждение атомов. При переходе атомов из ионизированных и возбужденных состояний в основное высвечивается энергия в виде вспышки света (сцинтилляции), которая может быть зарегистрирована различными способами. Лучший из них состоит в преобразовании энергии света в электрический сигнал с помощью оптически связанного со сцинтиллятором фотоэлектронного умножителя энергий. Химические методы основаны на том, что часть поглощенной энергии излучения переходит в химическую, что вызывает цепь химических превращений. Определение наличия излучения, его интенсивности производится по выходу химических реакций. Например, при облучении водного раствора FeSO4 ионы двухвалентного железа Fe2+ превращаются в ионы трехвалентного железа Fe3+. Одновременно при этом изменяется электрический потенциал и окраска раствора, что можно легко определить соответствующими способами. Фотографические методы основаны на способности излучения разлагать галогениды серебра AgCl или AgBr, входящие в состав чувствительных фотоэмульсий, до металлического серебра. В результате такого взаимодействия вдоль трека (следа прохождения) альфа- и бета-частиц выделяются зерна серебра и при проявлении фотопластинки виден след пробега ядерных частиц — почернение. По характеру трека можно определить вид, интенсивность и энергию излучения.
32. Принципы атомно-эмиссионной и атомно-абсорбционной спектроскопии.(из тетради по лекции так как в мудле еще не выложено)
АЭС: Исследуемое вещество вводится в пламя и регистрирует спектр излучения, испускаемого электронами внешних оболочек атома при их переходе с верхнего уровня на боле низкий.
ААС: Изменение величины поглощения луча света, проходящего через атомный пар исследуемой пробы.
Методы атомизации в ААС:
- нагревание
- воздействие ЭМИ или заряженных частиц.
Через атомный пар пропускается свет(источник света узкополосный и для каждого вещества индивидуален)
Принцип работы масс-спектрометра при анализе неорганических веществ.
(из тетради по лекции так как в мудле еще не выложено)
Масс-спектрометр – устройство для разделения в газовой фазе в соответствии с соотношением массы к заряду.
Схема: Образец=>Дозатор проб=>Ионизатор проб>Анализатор масс=>Детектор ионов
Принцип работы: проба исследуемого вещества попадает в вакуумную камеру, где ионизируется.
Ионизированный газ проходит через мощное постоянное магнитное поле, которое отклоняет траекторию движения ионизированных частиц газа в зависимости от отношения массы к заряду.
Потоки ионизированных частиц регистрируются на приемной поверхности вакуумной камеры.
По показаниям счетчиков определяют процентное соотношение того или иного компонента.
Квадрупольный масс-спектрометр: Квадрупольный масс-анализатор — один из основных видов масс-анализаторов масс-спектрометра. Масс-спектрометры с таким масс-анализатором называют квадрупольными, которые различают как одноквадрупольные (Q) и трехквадрупольные (QQQ).
Квадрупольный масс-анализатор служит для разделения ионов по их соотношению массы к заряду (m/z), которое в свою очередь определяется траекториями движения ионов, задаваемыми переменным электрическим полем.
Квадруполь
представляет собой четыре параллельно
и симметрично расположенных монополя
(электроды круглого сечения). К электродам
попарно в противоположной полярности
подаётся определённая комбинация
постоянного и высокочастотного напряжения
(
,
где
-
напряжение постоянного тока,
—
радиочастотная компонента).
Под
действием небольшого ускоряющего
напряжения (10-20 В) ионы
влетают параллельно осям стержней
электродов. Под действием осцилирующего
поля, задаваемым электродами, они
начинают колебаться вдоль осей x
и y.
При этом амплитуда колебаний возрастает
без изменения направления движения.
Ионы, чьи амплитуды достигают высоких
значений, нейтрализуются при столкновении
с электродами. Фиксированную амплитуду
приобретают только те ионы, чьи значения
m/z
будут отвечать определенному соотношению
.
Последнее позволяет им свободно
перемещаться в квадруполе и быть в
конечном итоге детектируемыми. Таким
образом, масс-спектр регистрируется
путем взаимного изменения значений
величин
и
.
Времяпролётный масс-анализатор — простейший вид масс-анализатора.
Во время-пролётном масс-анализаторе ионы вылетают из источника и попадают во время пролетную трубу, где отсутствует электрическое поле (бесполевой промежуток). Пролетев некоторое расстояние d , ионы регистрируются детектором ионов с плоской или почти плоской регистрирующей поверхностью. В 1950—1970 годах, в качестве детектора ионов использовался вторичный электронный умножитель «жалюзного типа» (Venetian blind), позже применялся комбинированный детектор, использующий две или иногда три последовательно расположенных микроканальных пластины (МКП).
Физический принцип работы время-пролётного масс-анализатора заключается в том, что разность потенциалов U ускоряет ионы в источнике ионов до скорости v согласно уравнению:
При фиксированной длине бесполевого промежутка от источника ионов до детектора ионов время полета ионов
тогда
Времяпролётный масс-анализатор является импульсным масс-анализатором, то есть ионы поступают из источника ионов во время-пролетную часть не непрерывно, а порциями через определенные интервалы времени. Такие масс-анализаторы совместимы с ионизацией лазерной десорбцией при содействии матрицы (МАЛДИ), так как в данном методе ионизации ионы также образуются не непрерывно, а при каждом импульсе лазера.