Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика зачет 2.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
291.04 Кб
Скачать

31. Основные способы регистрации ионизирующих излучений.

ИЗ ИНТЕРНЕТА!

К основным и наиболее часто применяемым методам ре­гистрации относятся следующие: ионизационные, оптические (сцинтилляционные), химические и фотографические. Ионизационный метод основан на регистрации эффекта ионизации, т. е. на измерении величины заряда ионов, возни­кающих под действием ионизирующего излучения. Измерить ионизационный эффект можно при помощи электрического поля, которое препятствует рекомбинации ионов и придает им направленное движение к соответствующим электродам. В качестве детекторов используют ионизационные камеры, пропорциональные счетчики, счетчики Гейгера—Мюллера, полупроводниковые детекторы и др. Эти детекторы, кроме полупроводниковых, представляют собой наполненные газом баллоны с двумя вмонтированными электродами. К электро­дам подведено напряжение постоянного тока. Детектор вклю­чается в электрическую цепь. При прохождении ионизирую­щей частицы через газовую среду образуются ионы, которые собираются на электродах. Положительные ионы движутся к катоду, отрицательные — к аноду. В электрической цепи образуется ионизационный ток, который регистрируется измерителем тока. По значению этого тока можно судить об интенсивности излу­чения или отсчитывать число зарегистрированных частиц. Протекание тока наблюдается до тех пор, пока на газ дей­ствует излучение. В противном случае ток в цепи не проте­кает, так как газ является изолятором. Взаимодействуя с веществом, ядерное излучение наряду с ионизацией производит возбуждение атомов и молекул. Через некоторое время (в зависимости от вещества) возбуж­денные атомы и молекулы переходят в невозбужденное со­стояние с выделением энергии во внешнюю среду. У некото­рых веществ (сернистый цинк, йодистый натрий, антрацен, стильбен, нафталин и др.) такой переход сопровождается испусканием энергии возбуждения в виде квантов видимого инфракрасного и ультрафиолетового света. Внешне это про­является в виде вспышек света — сцинтилляций, которые можно зарегистрировать с помощью соответствующих прибо­ров. На регистрации сцинтилляций, возникающих в определенных веществах при облучении их ионизирующими излу­чениями, и основаны оптические методы. Принцип работы сцинтилляционного детектора следующий: под действием излучений происходит ионизация и возбуждение атомов. При переходе атомов из ионизированных и возбужденных состояний в основное высвечивается энергия в виде вспышки света (сцинтилляции), которая может быть зарегистрирована различными способами. Лучший из них состоит в преобразовании энергии света в электрический сигнал с помощью оптически связанного со сцинтиллятором фотоэлектронного умножителя энер­гий. Химические методы основаны на том, что часть поглощен­ной энергии излучения переходит в химическую, что вызывает цепь химических превращений. Определение наличия излуче­ния, его интенсивности производится по выходу химических реакций. Например, при облучении водного раствора FeSO4 ионы двухвалентного железа Fe2+ превращаются в ионы трехвалентного железа Fe3+. Одновременно при этом изме­няется электрический потенциал и окраска раствора, что мож­но легко определить соответствующими способами. Фотографические методы основаны на способности излу­чения разлагать галогениды серебра AgCl или AgBr, входя­щие в состав чувствительных фотоэмульсий, до металлическо­го серебра. В результате такого взаимодействия вдоль трека (следа прохождения) альфа- и бета-частиц выделяются зерна серебра и при проявлении фотопластинки виден след пробега ядерных частиц — почернение. По характеру трека можно определить вид, интенсивность и энергию излучения.

32. Принципы атомно-эмиссионной и атомно-абсорбционной спектроскопии.(из тетради по лекции так как в мудле еще не выложено)

АЭС: Исследуемое вещество вводится в пламя и регистрирует спектр излучения, испускаемого электронами внешних оболочек атома при их переходе с верхнего уровня на боле низкий.

ААС: Изменение величины поглощения луча света, проходящего через атомный пар исследуемой пробы.

Методы атомизации в ААС:

- нагревание

- воздействие ЭМИ или заряженных частиц.

Через атомный пар пропускается свет(источник света узкополосный и для каждого вещества индивидуален)

  1. Принцип работы масс-спектрометра при анализе неорганических веществ.

(из тетради по лекции так как в мудле еще не выложено)

Масс-спектрометр – устройство для разделения в газовой фазе в соответствии с соотношением массы к заряду.

Схема: Образец=>Дозатор проб=>Ионизатор проб>Анализатор масс=>Детектор ионов

Принцип работы: проба исследуемого вещества попадает в вакуумную камеру, где ионизируется.

Ионизированный газ проходит через мощное постоянное магнитное поле, которое отклоняет траекторию движения ионизированных частиц газа в зависимости от отношения массы к заряду.

Потоки ионизированных частиц регистрируются на приемной поверхности вакуумной камеры.

По показаниям счетчиков определяют процентное соотношение того или иного компонента.

Квадрупольный масс-спектрометр: Квадрупольный масс-анализатор — один из основных видов масс-анализаторов масс-спектрометра. Масс-спектрометры с таким масс-анализатором называют квадрупольными, которые различают как одноквадрупольные (Q) и трехквадрупольные (QQQ).

Квадрупольный масс-анализатор служит для разделения ионов по их соотношению массы к заряду (m/z), которое в свою очередь определяется траекториями движения ионов, задаваемыми переменным электрическим полем.

Квадруполь представляет собой четыре параллельно и симметрично расположенных монополя (электроды круглого сечения). К электродам попарно в противоположной полярности подаётся определённая комбинация постоянного и высокочастотного напряжения ( , где - напряжение постоянного тока,  — радиочастотная компонента).

Под действием небольшого ускоряющего напряжения (10-20 В) ионы влетают параллельно осям стержней электродов. Под действием осцилирующего поля, задаваемым электродами, они начинают колебаться вдоль осей x и y. При этом амплитуда колебаний возрастает без изменения направления движения. Ионы, чьи амплитуды достигают высоких значений, нейтрализуются при столкновении с электродами. Фиксированную амплитуду приобретают только те ионы, чьи значения m/z будут отвечать определенному соотношению . Последнее позволяет им свободно перемещаться в квадруполе и быть в конечном итоге детектируемыми. Таким образом, масс-спектр регистрируется путем взаимного изменения значений величин и .

Времяпролётный масс-анализатор — простейший вид масс-анализатора.

Во время-пролётном масс-анализаторе ионы вылетают из источника и попадают во время пролетную трубу, где отсутствует электрическое поле (бесполевой промежуток). Пролетев некоторое расстояние d , ионы регистрируются детектором ионов с плоской или почти плоской регистрирующей поверхностью. В 1950—1970 годах, в качестве детектора ионов использовался вторичный электронный умножитель «жалюзного типа» (Venetian blind), позже применялся комбинированный детектор, использующий две или иногда три последовательно расположенных микроканальных пластины (МКП).

Физический принцип работы время-пролётного масс-анализатора заключается в том, что разность потенциалов U ускоряет ионы в источнике ионов до скорости v согласно уравнению:

При фиксированной длине бесполевого промежутка от источника ионов до детектора ионов время полета ионов

тогда

Времяпролётный масс-анализатор является импульсным масс-анализатором, то есть ионы поступают из источника ионов во время-пролетную часть не непрерывно, а порциями через определенные интервалы времени. Такие масс-анализаторы совместимы с ионизацией лазерной десорбцией при содействии матрицы (МАЛДИ), так как в данном методе ионизации ионы также образуются не непрерывно, а при каждом импульсе лазера.