
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Решение
Рассматриваем равновесие шарнира А, так как к этому шарниру приложены заданная нагрузка и искомые усилия в стержнях.
Освобождаем шарнир А от связей и заменяем их действие реакциями N1 и N2. Действующие на шарнир А нагрузка и искомые усилия показаны на рис. 2.7, б. Получили плоскую систему сходящихся сил, которая находится в равновесии.
Выбираем систему координат и составляем уравнения равновесия:
откуда
Требуемые площади поперечных сечений стержней
Откуда
П
ример
6. Однородная балка АВ поддерживается
тремя стальными стержнями 1,
2, 3 круглого поперечного сечения d
= 20 мм (рис. 2.8). Сила тяжести балки Q
= 10 кН. Найти допускаемую интенсивность
[q] равномерно
распределенной нагрузки, если
допускаемое напряжение для материала
стержней [σ] =160 Н/мм2.
Решение
Определим усилия, возникающие в стержнях. Под действием силы Q, равномерно распределенной нагрузки q и усилий N1, N2 и N3 в стержнях балка находится в равновесии.
Составляем уравнения равновесия:
Решая полученные уравнения, находим:
N3 больше, чем N1 и N2. Следовательно, опасными являются поперечные сечения стержня 3.
Условие прочности для стержня 3:
Подставляем значение N3:
Решая относительно ц и подставляя числовые значения, получаем:
где
Пример 7. Стальной стержень круглого сечения диаметром d = 20 мм растягивается силой Р = 65 кН. Проверить прочность стержня, если его предел текучести σ = σт = 300 Н/мм2 и требуемый коэффициент запаса [n] = 1,5.
Решение
Напряжения, возникающие в поперечном сечении стержня,
Расчетный коэффициент запаса
Следовательно, можно считать, что прочность стержня достаточна, так как расчетный коэффициент запаса незначительно (на 3%) меньше требуемого.
ЛЕКЦИЯ 21
Тема 2.2. Растяжение и сжатие. Продольные и поперечные деформации. Закон Гука
Иметь представление о продольных и поперечных деформациях и их связи.
Знать закон Гука, зависимости и формулы для расчета напряжений и перемещений.
Уметь проводить расчеты на прочность и жесткость статически определимых брусьев при растяжении и сжатии.
Деформации при растяжении и сжатии
Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).
В сопротивлении материалов принято рассчитывать деформации в относительных единицах:
Между продольной и поперечной деформациями существует зависимость
где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.
Закон Гука
В пределах упругих деформаций деформации прямо пропорциональны нагрузке:
где F — действующая нагрузка; к — коэффициент. В современной форме:
Получим зависимость
где Е — модуль упругости, характеризует
жесткость материала.
В пределах упругости нормальные напряжения пропорциональны относительному удлинению.
Значение Е для сталей в пределах (2 – 2,1) • 105МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:
Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы.
Относительное удлинение
В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:
где
Δl — абсолютное удлинение, мм;
σ — нормальное напряжение, МПа;
l — начальная длина, мм;
Е — модуль упругости материала, МПа;
N — продольная сила, Н;
А — площадь поперечного сечения, мм2;
Произведение АЕ называют жесткостью сечения.
Выводы
Абсолютное удлинение бруса прямо пропорционально величине продольной силы в сечении, длине бруса и обратно пропорционально площади поперечного сечения и модулю упругости.
Связь между продольной и поперечной деформациями зависит от свойств материала, связь определяется коэффициентом Пуассона, называемом коэффициентом поперечной деформации.
Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0; у резины μ = 0,5.
Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная деформация рассчитывается через продольную.
где Δа — поперечное сужение, мм;
ао — начальный поперечный размер, мм.
Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяжения (рис. 21.2).
При работе пластические деформации не должны возникать, упругие деформации малы по сравнению с геометрическими размерами тела. Основные расчеты в сопротивлении материалов проводятся в зоне упругих деформаций, где действует закон Гука.
На диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1.
Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не нарушающей работоспособности бруса) называют расчетом на жесткость.