
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Р ешение
Для расчёта на устойчивость должна быть известна критическая сила для заданной стойки. Необходимо установить, по какой формуле следует вычислять критическую силу, т. е. надо сопоставить гибкость стойки с предельной гибкостью для её материала.
Вычисляем величину предельной гибкости, так как табличных данных о λ,пред для материала стойки не имеется:
Для определения гибкости рассчитываемой стойки вычисляем геометрические характеристики ее поперечного сечения:
Определяем гибкость стойки:
и убеждаемся, что λ < λпред, т. е. критическую силу можно определить ею формуле Эйлера:
Вычисляем расчетный (действительный) коэффициент запаса устойчивости:
Таким образом, nу > [nу] на 5,2%.
Пример 2.87. Проверить на прочность и устойчивость заданную стержневую систему (рис. 2.86), Материал стержней — сталь Ст5 (σт = 280 Н/мм2). Требуемые коэффициенты запаса: прочности [n] = 1,8; устойчивости [nу] = 2,2. Стержни имеют круглое поперечное сечение d1 = d2 = 20 мм, d3 = 28 мм.
Решение
Вырезая узел, в котором сходятся стержни, и составляя уравнения равновесия для действующих на него сил (рис. 2.86)
устанавливаем, что заданная система статически неопределима (три неизвестных усилия и два уравнения статики). Ясно, что для расчета стержней на прочность и устойчивость необходимо знать величины продольных сил, возникающих в их поперечных сечениях, т. е. нужно раскрыть статическую неопределимость.
Составляем уравнение перемещений на основе диаграммы перемещений (рис. 2.87):
или, подставляя значения изменений длин стержней, получаем
откуда
Решив это уравнение совместно с уравнениями статики, найдем:
Напряжения в поперечных сечениях стержней 1 и 2 (см. рис. 2.86):
Их коэффициент запаса прочности
Для определения коэффициента запаса устойчивости стержня 3 надо вычислить критическую силу, а это требует определения гибкости стержня, чтобы решить, какой формулой для нахождения NKp следует воспользоваться.
Итак, λ0 < λ < λпред и критическую силу следует определять по эмпирической формуле:
Коэффициент запаса устойчивости
Таким образом, расчет показывает, что коэффициент запаса устойчивости близок к требуемому, а коэффициент запаса прочности значительно выше требуемого, т. е. при увеличении нагрузки системы потеря устойчивости стержнем 3 вероятнее, чем возникновение текучести в стержнях 1 и 2.