
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Напряжения
Метод сечений позволяет определить величину внутреннего силового фактора в сечении, но не дает возможности установить закон распределения внутренних сил по сечению. Для оценки прочности необходимо определить величину силы, приходящуюся на любую точку поперечного сечения.
Величину интенсивности внутренних сил в точке поперечного сечения называют механическим напряжением. Напряжение характеризует величину внутренней силы, приходящейся на единицу площади поперечного сечения.
Рассмотрим брус, к которому приложена внешняя нагрузка (рис. 19.2). С помощью метода сечений рассечем брус поперечной плоскостью, отбросим левую часть и рассмотрим равновесие оставшейся правой части. Выделим на секущей плоскости малую площадку ΔА. На этой площадке действует равнодействующая внутренних сил упругости.
Направление напряжения рср совпадает с направлением внутренней силы в этом сечении.
Вектор рср называют полным напряжением. Его принято раскладывать на два вектора (рис. 19.3): τ — лежащий в площадке сечения и σ — направленный перпендикулярно площадке.
Если вектор ρ — пространственный, то его раскладывают на три составляющие:
Нормальное напряжение характеризует сопротивление сечения растяжению или сжатию.
Касательное напряжение характеризует сопротивление сечения сдвигу.
Сила N (продольная) вызывает появление нормального напряжения σ. Силы Qx и Qy вызывают появление касательных напряжений τ. Моменты изгибающие Мх и Му вызывают появление нормальных напряжений σ, переменных по сечению.
Крутящий момент МZ вызывает сдвиг сечения вокруг продольной оси, поэтому появляются касательные напряжения τ.
Примеры решения задач п оследовательность построения эпюр продольных сил
Изобразить расчетную схему бруса и приложить заданные силы. При необходимости определить опорную реакцию из уравнения равновесия.
Брус разбить на участки соответственно точкам приложения сил.
Определить по методу сечений продольную силу для каждого участка.
Найденные величины продольных сил отложить в масштабе в виде ординат, перпендикулярных оси стержня. Через концы ординат провести линии; проставить знаки и заштриховать эпюру параллельно ординатам
Пример 1. Определить величину продольной силы в сечении 1-1 (рис. 19.4).
Решение
Используем уравнение равновесия
Рассматривая левую часть бруса, определяем
Рассматривая правую часть бруса, определяем Nz1 = 23 — 14 = 9кН.
Величина продольной силы в сечении не зависит от того, какая часть бруса рассматривается.
Пример 2. Определить внутренний силовой фактор в сечении 1-1 (рис. 19.5а).
Р ешение
Рассматриваем правую часть бруса. На отсеченную часть бруса принято смотреть со стороны отброшенной части (рис. 19.5, б). Получаем Mz = 246 – 40 – 16 = 190 кН • м.
Пример 3. Для бруса, изображенного на рис. 2.4, а, построить эпюру продольных сил.
Решение
З
аданный
брус имеет три участка 1, II, III (рис.
2.4, а). Границами участков при
построении эпюры N являются сечения,
в которых приложены внешние силы.
Проведем произвольное сечение аb на участке 1 и, отбросив левую часть бруса, рассмотрим равновесие правой части, изображенной отдельно на рис. 2.4, б.
На оставленную часть действуют сила Р1 и искомое усилие N1. Проектируя на ось z силы, действующие на оставленную часть, получаем:
Значение получилось со знаком плюс, что указывает на совпадение ее предположительного (см. рис. 2.4, 6) направления с действительным. Сила направлена от сечения, т. е. участок I испытывает растяжение.
Проведем произвольное сечение cd на участке II, отбросим левую часть бруса и рассмотрим равновесие оставленной (правой) части, изображенной отдельно на рис. 2.4, в. На оставленную часть действуют силы Р1, Р2 и искомое усилие NII.. Проектируя эти силы на ось г, получаем
Сила NII направлена от сечения, т. е. участок II испытывает растяжение.
П
роведем произвольное сечение еf на участке III, отбросим левую часть бруса и рассмотрим равновесие оставленной (правой) части, изображенной отдельно на рис. 2.4, г. На оставленную часть действуют силы Р1, Р2, Р3 и искомое усилие NIII. Проектируя эти силы на ось z, получаем
Сила NIII направлена к сечению, т. е. участок III испытывает сжатие.
Напомним, что продольные силы, соответствующие растяжению, принято считать положительными, а соответствующие сжатию — отрицательными.
Эпюра продольных сил показана на рис. 2.4, д.