
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Решение
Для данного случая наибольший изгибающий момент возникает посередине пролета
Определяем допускаемое значение наибольшего изгибающего момента
где
Тогда
Приравниваем вычисленное значение допускаемого изгибающего момента его значению, выраженному через нагрузку:
откуда
П
ример
5. Определить допускаемый изгибающий
момент для чугунной балки, сечение
которой изображено на рис. 2.60. Допускаемые
напряжения на растяжение [σр]=300
кгс/см2, на сжатие [σс] =
800 кгс/см2.
Решение
Момент инерции сечения вычисляем как разность моментов инерции большого и малого прямоугольников
Осевой момент сопротивления
Допускаемый изгибающий момент определяем из расчета по наибольшим растягивающим напряжениям
то же, по наибольшим сжимающим напряжениям
Меньший из вычисленных моментов [Мр] = 58,7 тс-м определяет допускаемую нагрузку балки.
Таким образом, в чугунной балке симметричного сечения допускаемая нагрузка ограничивается прочностью растянутых волокон. Чтобы для чугунной балки допускаемая нагрузка была одинакова по условиям прочности растянутых и сжатых волокон, сечение ее должно быть несимметричным относительно нейтральной оси. Расстояния от нейтральной оси до крайних волокон растянутой зоны ур и сжатой ус должны удовлетворять отношению
Этого можно добиться, в частности, применив несимметричный двутавр, у которого горизонтальная полка, находящаяся в растянутой зоне, толще, чем полка, расположенная в сжатой зоне.
Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
Иметь представление об устойчивых и неустойчивых формах равновесия, критической силе и коэффициенте запаса устойчивости, о критическом напряжении, гибкости стержня и предельной гибкости.
Знать условие устойчивости сжатых стержней, формулу Эйлера и эмпирические формулы для расчета критической силы и критического напряжения.
Понятие об устойчивом и неустойчивом равновесии
Относительно
короткие и массивные стержни рассчитывают
на сжатие, т. к. они выходят из строя в
результате разрушения или остаточных
деформаций. Длинные стержни небольшого
поперечного сечения под действием
осевых сжимающих сил изгибаются и теряют
равновесие. Такие стержни работают на
изгиб и сжатие.
Равновесие считают устойчивым, если за счет сил упругости после снятия внешней отклоняющей силы стержень восстановит первоначальную форму (рис. 36.1).
Если упругое тело после отклонения от равновесного положения не возвращается к исходному состоянию, то говорят, что произошла потеря устойчивости, а равновесие было неустойчивым.
Потерю устойчивости под действием центрально приложенной продольной сжимающей силы называют продольным изгибом.
На устойчивость равновесия влияет величина сжимающей силы.
Наибольшее значение сжимающей силы, при которой прямолинейная форма стержня сохраняет устойчивость, называют критической силой. Даже при небольшом превышении критического значения силы стержень недопустимо деформируется и разрушается.
Расчет на устойчивость
Расчет на устойчивость заключается в определении допускаемой сжимающей силы и в сравнении с ней силы действующей:
где F — действующая сжимающая сила;
[F] — допускаемая сжимающая сила, обеспечивает некоторый запас устойчивости;
FKP — критическая сила;
[sy] — допускаемый коэффициент запаса устойчивости.
Обычно для сталей [sу] = 1,8 – 3; для чугуна [sy] = 5; для дерева [sу] = 2,8.