
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Р ешение
Определим опорные реакции:
откуда
Составим проверочное уравнение:
следовательно, реакции вычислены верно.
Балка имеет четыре участка I, II, III, IV (рис. 2.56, а).
Проводим сечение в пределах участка I (0 ≤ z ≤ 1,6 м) и, рассматривая равновесие левой отсеченной части, определяем аналитические выражения поперечной силы и изгибающего момента на этом участке:
Поперечная сила изменяется по линейному закону:
Изгибающий момент М1Х изменяется по закону квадратной параболы, параболу строим по двум точкам:
Аналогично, проводя сечения на участке II (1,6 м ≤ z ≤ 3,6 м) и рассматривая равновесие левой отсеченной части балки, получаем:
Поперечная сила на участке II, как и на участке I, изменяется по линейному закону:
Изгибающий момент на участке II изменяется по закону квадратной параболы:
Проводим сечение на участке III и рассматриваем равновесие правой части, отсчитывая абсциссы от точки В (1,8 м < z1 < 3 м).
К правой отсеченной части балки приложено меньше внешних сил, чем к левой, поэтому составление аналитических выражений для поперечной силы и изгибающего момента будет проще:
Поперечная сила на участке III постоянна. Изгибающий момент изменяется по линейному закону:
Проводя сечение на участке IV, так же рассматриваем равновесие правой отсеченной части (0 ≤ z1 < 1,8 м):
Эпюра поперечных сил изображается прямой, параллельной оси балки, как и на третьем участке. Эпюра изгибающих моментов имеет вид наклонной прямой:
По полученным данным на рис. 2.56, б, в построены эпюры поперечных сил и изгибающих моментов.
Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
Знать распределение нормальных напряжений по сечению балки при чистом изгибе, расчетные формулы и условия прочности.
Уметь выполнять проектировочные и проверочные расчеты на прочность, выбирать рациональные формы поперечных сечений.
Деформации при чистом изгибе
При чистом изгибе в сечении возникает только один внутренний силовой фактор — изгибающий момент.
Рассмотрим
деформацию бруса, нагруженного внешней
парой сил с моментом т
(рис. 32.1а).
При чистом изгибе выполняются гипотезы плоских сечений и ненадавливаемости слоев.
Сечения бруса, плоские и перпендикулярные продольной оси, после деформации остаются плоскими и перпендикулярными продольной оси.
Продольные волокна не давят друг на друга, поэтому слои испытывают простое растяжение или сжатие.
Действуют только нормальные напряжения.
Поперечные размеры сечений не меняются.
Продольная ось бруса после деформации изгиба искривляется и образует дугу окружности радиуса ρ (рис. 32.1б). Материал подчиняется закону Гука.
Можно
заметить, что слои, расположенные выше
продольной оси, растянуты, расположенные
ниже оси — сжаты (рис. 32.1б). Так как
деформации по высоте сечения меняются
непрерывно, имеется слой, в котором
нормальные
напряжения
σ равны нулю; такой слой называют
нейтральным слоем (НС). Доказано,
нейтральный слой проходит через центр
тяжести сечения; ρ — радиус кривизны
нейтрального слоя.
Рассмотрим деформацию слоя, расположенного на расстоянии у от нейтральной оси (участок АВ, рис. 32.1).
Длина участка до деформации равна длине нейтральной оси:
Абсолютное удлинение слоя
(рис. 32.1б).
Относительное удлинение
Относительное удлинение прямо пропорционально расстоянию слоя до нейтральной оси.
Используем закон Гука при растяжении: σ = Еε.
Получим зависимость нормального напряжения при изгибе от положения слоя: