
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Решение
Определяем вращающий момент на валу:
Проверка прочности вала. Из условия равновесия
Условие прочности:
где τк — расчетное напряжение в сечении; Мк — крутящий момент в сечении; Wp — момент сопротивления; [τк] — допускаемое напряжение кручения.
Прочность обеспечена. Максимальное касательное напряжение в сечении
14,65 МПа < 20 МПа.
Проверка жесткости. Условие жесткости:
где φ0 — относительный угол закручивания; Jv — полярный момент инерции при кручении; [φ0] — допускаемый угол закручивания.
Угол закручивания участка
Жесткость обеспечена.
6. Построим эпюру касательных напряжений в поперечном сечении (рис. 28.55). Определим напряжение в точке, удаленной на 5 мм от оси вала.
Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
Иметь представление о видах изгиба и внутренних силовых факторах.
Знать методы для определения внутренних силовых факторов и уметь ими пользоваться для определения внутренних силовых факторов при прямом изгибе.
Основные определения
И
згибом
называется такой вид нагружения, при
котором в поперечном сечении бруса
возникает внутренний силовой фактор —
изгибающий момент.
Брус, работающий на изгиб, называют балкой.
Изображен брус, закрепленный справа (защемление), нагруженный внешними силами и моментом (рис. 29.1).
Плоскость, в которой расположены внешние силы и моменты, называют силовой плоскостью.
Если все силы лежат в одной плоскости, изгиб называют плоским.
Плоскость, проходящая через продольную ось бруса и одну из главных центральных осей его поперечного сечения, называется главной плоскостью бруса.
Если силовая плоскость совпадает с главной плоскостью бруса, изгиб называют прямым (рис. 29.1).
Если силовая плоскость не проходит через главную плоскость бруса, изгиб называют косым изгибом (рис. 29.2).
Внутренние силовые факторы при изгибе
Пример 1. Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения внутренних силовых факторов пользуемся методом сечений.
Рассмотрим равновесие участка 1 (рис. 29.36).
Под действием внешней пары сил участок стремится развернуться по часовой стрелке. Силы упругости, возникающие в сечении 1, удерживают участок в равновесии.
П
родольные
силы упругости выше оси бруса направлены
направо, а силы ниже оси направлены
налево. Таким образом, при равновесии
участка 1 получим: Fz
= 0. Продольная сила N в сечении равна
нулю. Момент сил упругости относительно
оси Ох может быть получен, если
суммировать элементарные моменты сил
упругости в сечении 1-1 относительно оси
Ох:
Из схемы вала на рис. 29.3 б видно, что часть волокон (выше оси) испытывают сжатие, а волокна ниже оси растянуты. Следовательно, в сечении должен существовать слой не растянутый и не сжатый, где напряжения σ равны нулю.
Такой слой называют нейтральным слоем (НС). Линия пересечения нейтрального слоя с плоскостью поперечного сечения бруса называют нейтральной осью.
Нейтральный слой проходит через центр тяжести сечения. Здесь нейтральный слой совпадает с осью Ох.
Практически величина изгибающего момента в сечении определяется из уравнения равновесия: Σ тХ1_1 = m — МХ1 = 0; МХ1 = т.
Таким образом, в сечении 1-1 продольная сила равна нулю, изгибающий момент в сечении постоянен.
Изгиб, при котором в поперечном сечении бруса возникает только изгибающий момент, называется чистым изгибом.
Рассмотрим равновесие участка бруса от свободного конца до сечения 2 (рис. 29.Зв).
Запишем уравнения равновесия для участка бруса:
В сечении бруса 2-2 действует поперечная сила, вызывающая сдвиг.
Изгибающий момент в сечении:
z2 — расстояние от сечения 2 до начала координат.
Изгибающий момент зависит от расстояния сечения до начала координат.
Изгиб, при котором в поперечном сечении бруса возникает изгибающий момент и поперечная сила, называется поперечным изгибом.