
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Решение
На рис. 2.40, б изображен вал I. На него поступает мощность N и с него снимаются мощности Nl, N2, N3.
Определим угловую скорость вращения вала 1 и внешние скручивающие моменты m, m1, т2, т3:
Строим эпюру крутящих моментов для вала 1 (рис. 2.40, в). При этом, двигаясь от левого конца вала, условно считаем моменты, соответствующие N3 и N1, положительными, а N — отрицательным. Расчетный (максимальный) крутящий момент Nx1 max = 354,5 H*м.
Диаметр вала 1 из условия прочности
Диаметр вала 1 из условия жесткости ([Θ], рад/мм)
Окончательно принимаем с округлением до стандартного значения d1 = 58 мм.
Частота вращения вала 2
На рис. 2.40, г изображен вал 2; на вал поступает мощность N1, а снимаются с него мощности N4, N5, N6.
Вычислим внешние скручивающие моменты:
Эпюра крутящих моментов для вала 2 показана на рис. 2.40, д. Расчетный (максимальный) крутящий момент Мя max" = 470 H-м.
Диаметр вала 2 из условия прочности
Диаметр вала 2 из условия жесткости
Окончательно принимаем d2=62 мм.
Пример 9. Определить из условий прочности и жесткости мощность N (рис. 2.41, а), которую может передать стальной вал диаметром d = 50 мм, если [тк] = 35 Н/мм2, [ΘJ = 0,9 град/м; G = 8,0* I04 Н/мм2, n = 600 об/мин.
Р ешение
Вычислим внешние моменты, приложенные к валу:
где
Расчетная схема вала показана на рис. 2.41, б.
На рис. 2.41, в представлена эпюра крутящих моментов. Расчетный (максимальный) крутящий момент Mz = 9,54N. Условие прочности
откуда
Условие жесткости
откуда
Лимитирующим является условие жесткости. Следовательно, допускаемое значение передаваемой мощности [N] = 82,3 кВт.
Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
Иметь представление о рациональных формах поперечного сечения и рациональном расположении колес на валу.
Знать условия прочности и жесткости при кручении.
Уметь выполнять проектировочные и проверочные расчеты круглого бруса для статически определимых систем.
Примеры решения задач
П
ример
1. Для заданного бруса (рис. 28.1)
построить эпюры крутящих моментов,
рациональным расположением шкивов на
валу добиться уменьшения значения
максимального крутящего момента.
Построить эпюру крутящих моментов при
рациональном расположении шкивов.
Из условия прочности определить диаметры вала для сплошного и кольцевого сечений, приняв
Сравнить результаты по полученным площадям поперечных сечений.
Решение
Пользуясь методом сечений, определяем крутящие моменты на участках вала (рис. 28.2).
Строим эпюру крутящих моментов. Значения крутящих моментов откладываем вниз от оси, т. к. моменты отрицательные.
Максимальное значение крутящего момента на валу в этом случае 1000Н*м (рис. 28.1).
Выберем рациональное расположение колес на валу. Наиболее целесообразно такое размещение колес, при котором наибольшие положительные и отрицательные значения крутящих моментов на участках будут по возможности одинаковыми. Из этих соображений ведущий шкив, передающий момент 1000 Н*м, помещаем ближе к центру вала, ведомые шкивы 1 и 2 размещаем слева от ведущего с моментом 1000 Н*м, шкив 3 остается на том же месте. Строим эпюру крутящих моментов при выбранном расположении шкива (рис. 28.3).
М
аксимальное
значение крутящего момента на валу при
выбранном расположении колес на валу
600 Н*м.
Определяем диаметры вала по сечениям при условии, что сечение — круг.
Условие прочности при кручении
Момент сопротивления кручению
Определяем диаметры вала по сечениям:
Округляем полученные значения: d1 = 40 мм; d2 = 45 мм; d3 = 35 мм.
Определяем диаметры вала по сечениям при условии, что сечение — кольцо.
Моменты сопротивления, полученные выше из условий прочности, остаются теми же. По условию
Полярный момент сопротивления кольца
Формула для определения наружного диаметра вала кольцевого сечения будет следующей:
Расчет можно провести по формуле
Диаметры вала по сечениям:
Наружные диаметры вала кольцевого сечения практически не изменились.
Для кольцевого сечения: d1 = 40 мм; d'2 = 46 мм; d'3 = 35 мм.
Для вывода об экономии металла при переходе на кольцевое сечение сравним площади сечений (рис. 28.4).
При условии, что сечение — круг (рис.
28.4а):
Сплошное круглое сечение:
При условии, что сечение — кольцо, с = dBH/d1 = 0,5 (рис. 28.4 б):
Кольцевое сечение:
Сравнительная оценка результатов:
Следовательно, при переходе с кругового на кольцевое сечение экономия металла по весу составит 1,3 раза.
Пример 2. Стальной вал диаметром 40 мм передает мощность 15кВт при угловой скорости 80рад/с (рис. 28.5); проверить прочность и жесткость вала, если допускаемое напряжение кручения 20 МПа. Модуль упругости при сдвиге 0,8 • 105 МПа. Допускаемый угол закручивания [φ0] = 0,6 град/м. Построить эпюру касательных напряжений и определить значение касательного напряжения в точке, удаленной на 5 мм от оси вала.