
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Решение
Эпюра касательных напряжений в поперечном сечении представлена на рис. 2.37, б. Очевидно,
откуда
Пример 3. В точках внутреннего контура поперечного сечения трубы (d0 = 60 мм; d = 80 мм) возникают касательные напряжения, равные 40 Н/мм2. Определить максимальные касательные напряжения, возникающие в трубе.
Решение
Эпюра касательных напряжений в поперечном сечении представлена на рис. 2.37, в. Очевидно,
Откуда
Пример 4. В кольцевом поперечном сечении бруса (d0 = 30 мм; d = 70 мм) возникает крутящий момент Мz = 3 кН-м. Вычислить касательное напряжение в точке, удаленной от центра сечения на 27 мм.
Решение
Касательное напряжение в произвольной точке поперечного сечения вычисляется по формуле
В рассматриваемом примере Мz = 3 кН-м = 3-106 Н• мм,
Подставляя числовые значения, получаем
Пример 5. Стальная труба (d0 = l00 мм; d = 120 мм) длиной l = 1,8 м закручивается моментами т, приложенными в ее торцевых сечениях. Определить величину т, при которой угол закручивания φ = 0,25°. При найденном значении т вычислить максимальные касательные напряжения.
Решение
Угол закручивания (в град/м) для одного участка вычисляется по формуле
тогда
В данном случае
Подставляя числовые значения, получаем
Вычисляем максимальные касательные напряжения:
П
ример
6. Для заданного бруса (рис. 2.38, а)
построить эпюры крутящих моментов,
максимальных касательных напряжений,
углов поворота поперечных сечений.
Решение
Заданный брус имеет участки I, II, III, IV, V (рис. 2. 38, а). Напомним, что границами участков являются сечения, в которых приложены внешние (скручивающие) моменты и места изменения размеров поперечного сечения.
Пользуясь соотношением
строим эпюру крутящих моментов.
Построение эпюры Мz начинаем со свободного конца бруса:
для участков III и IV
для участка V
Эпюра крутящих моментов представлена на рис, 2.38, б. Строим эпюру максимальных касательных напряжений по длине бруса. Условно приписываем τшах те же знаки, что и соответствующим крутящим моментам. На участке I
на участке II
на участке III
на участке IV
на участке V
Эпюра максимальных касательных напряжений показана на рис. 2.38, в.
Угол поворота поперечного сечения бруса при постоянных (в пределах каждого участка) диаметре сечения и крутящем моменте определяется по формуле
Строим эпюру углов поворота поперечных сечений. Угол поворота сечения А φл = 0, так как в этом сечении брус закреплен.
Эпюра углов поворота поперечных сечений изображена на рис. 2.38, г.
Пример 7. На шкив В ступенчатого вала (рис. 2.39, а) передается от двигателя мощность NB = 36 кВт, шкивы А и С соответственно передают на станки мощности NA = 15 кВт и NC = 21 кВт. Частота вращения вала п = 300 об/мин. Проверить прочность и жесткость вала, если [τKJ = 30 Н/мм2, [Θ] = 0,3 град/м, G = 8,0-104 Н/мм2, d1 = 45 мм, d2 = 50 мм.
Р ешение
Вычислим внешние (скручивающие) моменты, приложенные к валу:
где
Строим эпюру крутящих моментов. При этом, двигаясь от левого конца вала, условно считаем момент, соответствующий NА, положительным, Nc — отрицательным. Эпюра Mz показана на рис. 2.39, б. Максимальные напряжения в поперечных сечениях участка АВ
что меньше [тк] на
Относительный угол закручивания участка АВ
что значительно больше [Θ] ==0,3 град/м.
Максимальные напряжения в поперечных сечениях участка ВС
что меньше [тк] на
Относительный угол закручивания участка ВС
что значительно больше [Θ] = 0,3 град/м.
Следовательно, прочность вала обеспечена, а жесткость — нет.
Пример 8. От электродвигателя с помощью ремня на вал 1 передается мощность N = 20 кВт, С вала 1 поступает на вал 2 мощность N1 = 15 кВт и к рабочим машинам — мощности N2 = 2 кВт и N3 = 3 кВт. С вала 2 к рабочим машинам поступают мощности N4 = 7 кВт, N5 = 4 кВт, N6 = 4 кВт (рис. 2.40, а). Определить диаметры валов d1 и d2 из условия прочности и жесткости, если [τKJ = 25 Н/мм2, [Θ] = 0,25 град/м, G = 8,0-104 Н/мм2. Сечения валов 1 и 2 считать по всей длине постоянными. Частота вращения вала электродвигателя п = 970 об/мин, диаметры шкивов D1 = 200 мм, D2 = 400 мм, D3 = 200 мм, D4 = 600 мм. Скольжением в ременной передаче пренебречь.