
- •Сопротивление материалов лекция 18 Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
Примеры решения задач
П
ример
1. На распределительном валу (рис.
26.3) установлены четыре шкива, на вал
через шкив 1 подается мощность 12 кВт,
которая через шкивы 2, 3, 4 передается
потребителю; мощности распределяются
следующим образом: Р2 = 8 кВт, Р3
= 3 кВт, Р4 = 1кВт, вал вращается с
постоянной скоростью ω = 25 рад/с.
Построить эпюру крутящих моментов на
валу.
Решение
1. Определяем моменты пар сил на шкивах.
Вращающий момент определяем из формулы мощности при вращательном движении
Момент на шкиве 1 движущий, а моменты на шкивах 2, 3, 4 — моменты сопротивления механизмов, поэтому они имеют противоположное направление. Брус скручивается между движущим моментом и моментами сопротивления. При равновесии момент движущий равен сумме моментов сопротивления:
Определяем крутящие моменты в поперечных сечениях бруса с помощью метода сечений.
Строим эпюру крутящих моментов. Заметим, что скачок на эпюре всегда численно равен приложенному вращающему моменту.
Выбираем соответствующий масштаб.
Откладываем значения моментов, штрихуем эпюру поперек, обводим по контуру, записываем значения моментов (см. эпюру под схемой вала (рис. 26.3)). Максимальный крутящий момент на участке III Мкз = 320 Н*м.
П
ример
2. Выбрать рациональное расположение
колес на валу (рис. 26.5). m1
= 280 Н • м; т2 = 140 Н • м; т3
= 80 Н* м.
Примечание. Меняя местами колеса (шкивы) на валу, можно изменять величины крутящих моментов. Рациональным расположением является такое, при котором крутящие моменты принимают минимальные из возможных значения.
Рассмотрим нагрузки на валу при различном расположении колес.
Из представленных вариантов наиболее рационально расположение шкивов в третьем случае, здесь значения крутящих моментов минимальны. Вывод: при установке шкивов желательно, чтобы мощность подавалась в середине вала и по возможности равномерно распределялась направо и налево.
Пример 3. Для бруса, изображенного на рис. 2.34, а, построить эпюру крутящих моментов.
Р ешение
Заданный брус имеет три участка I, II, III. Напомним, что границами участков являются сечения, в которых прилажены внешние (скручивающие) моменты.
В данном случае проще, применяя метод сечений, оставлять левую и отбрасывать правую часть бруса — это дает возможность не определять реактивный момент в заделке.
Проводим произвольное поперечное сечение на участке I и составляем уравнение равновесия для оставленной части бруса, изображенной отдельно на рис. 2.34, 6:
В любом сечении участка I крутящий момент имеет найденное значение M1z = т. Из уравнения равновесия для оставленной части значение M1z получилось со знаком плюс. Это указывает на то, что выбранное направление M1z соответствует действительному.
Эпюра крутящих моментов на этом участке — прямая, параллельная оси абсцисс. Согласно принятому правилу знаков М1я отрицателен, и ординаты эпюры откладываем вниз от ее оси.
Проводим произвольное поперечное сечение на участке II и составляем уравнение равновесия для оставленной части бруса, изображенной отдельно на рис. 2.34, в:
Откуда
И в этом случае выбранное направление MIIz соответствует действительному. В любом сечении участка II крутящий момент MzII = 2m. Согласно принятому правилу знаков, MzII положителен и ординаты эпюры откладываем вверх от ее оси.
Проводим произвольное поперечное сечение на участке III и составляем уравнение равновесия для оставленной части бруса, изображенной отдельно на рис. 2.34, г:
откуда
В любом сечении участка III MzIII = —Зт.
Эпюра крутящих моментов представлена на рис. 2.34, д.
При нагружении бруса сосредоточенными моментами эпюра всегда имеет такой же характер, как и в рассматриваемом случае: на отдельных участках она ограничена прямыми, параллельными оси абсцисс; в местах приложения внешних (скручивающих) моментов получаются скачки на величину этих моментов.
П
ример
4. На вал насажены шкивы 1, 2, 3,
4 (рис. 2.35, а). Шкив 1 передает от
источника энергии на вал мощность
N1 =
5,2 кВт, а остальные шкивы снимают с вала
и передают рабочим машинам мощности
соответственно N2
= 1,5 кВт; N3
= 1,7 кВт; N4 =
2,0 кВт. Вал вращается с частотой п = 240
об/мин. Построить эпюру крутящих моментов.