
- •Лекция 3 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
Р ешение
1. Рассматриваемой тонкой остается точка А.
2. Активная сила (вес груза G) действует на точку горизонтально слева направо, так как груз перекинут через блок.
3. Усилия S1 и S2 прикладываем к точке А, как в примере 2.
4. Выбираем систему координат, как показано на рис. б.
5
. Составляем
и решаем уравнения равновесия:
И
з
первого уравнения находим
И
з
второго уравнения находим
О
твет:
S1
= 26,94 кН; S2
= - 10,64 кН при принятом направлении усилий
на чертеже. Усилие S1
увеличилось, S2
— уменьшилось, а знаки не изменились.
Пример 7. Определить усилия в стержнях (рис. а). Массой стержней пренебречь.
Решение
В соответствии с последовательностью действий, будем рассматривать равновесие узла А к которому приложены заданные нагрузки (Р, 2Р, 3Р) и искомые реакции стержней АВ и АС.
Освободим узел А от связей, заменим их действие искомыми реакциями NАС, NAB (рис. в). Получили плоскую систему сходящихся сил.
Выбираем систему координат (рис. г).
Сила NAB перпендикулярна оси v, сила NАС — оси и; поэтому в каждое уравнение равновесия войдет лишь одна неизвестная сила:
Силы NAB и NАС получились положительными; это значит, что предполагаемые направления сил совпадают с действительными.
На рис. д показаны силы, действующие на узел (реакции стержней), и силы, действующие на стержни (усилия в стержнях или реакции узла).
Решим тот же пример графическим методом.
Полученная система сил (см. рис. в) находится в равновесии, и, следовательно, силовой многоугольник, построенный для этой системы сил, должен быть замкнутым.
Строим силовой многоугольник. Выбираем масштаб (рис. е). От точки О (рис. ж) в выбранном масштабе откладываем сначала силу Р, затем от конца вектора Р — силу 2Р, после чего от конца вектора 2Р — силу ЗР. Масштаб следует выбрать достаточно крупный, с тем чтобы при измерении отрезков (векторов), изображающих искомые силы, можно было получить их значения без большой погрешности. Через точку b проводим линию, параллельную стержню АС, и через точку О — линию, параллельную стержню АВ. Отрезки ОС и CB представляют собой искомые усилия. Направления заданных сил известны; стрелки, изображающие направления искомых сил, ставим таким образом, чтобы в векторном многоугольнике было единое направление обхода — в данном случае против часовой стрелки. Измерив отрезки к и Ос в соответствии с выбранным масштабом, находим абсолютные величины реакций; NAcza\,2P\ Nab~4,2P.
Решение примера выполнено двумя способами, которые (в пределах точности построений) дали совпадающие результаты. Очевидно, здесь никакой дополнительной проверки решения не требуется.
П
ример
8.
Определить предельное значение угла
а, при котором груз
А
(рис. а)
будет находиться в покое. Плоскость
ВС
считать абсолютно гладкой.
Решение
Силы, действующие на груз А, представляют собой плоскую систему сходящихся сил. NBC — реакция наклонной плоскости.
Если груз А находится в покое, то ∑Pto = 0, т.е.