Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по статике.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
472.58 Кб
Скачать

Решение

  1. Р еакции стержней направлены вдоль стержней, реакции гибких связей направлены вдоль нитей в сторону натяжения (рис. 1.13, а).

  2. Для определения точного направления усилий в стержнях мысленно убираем последовательно стержни 1 и 2. Анализируем воз­можные перемещения точки А.

Неподвижный блок с действующими на него силами не рассмат­риваем.

  1. Убираем стержень 1, точка А поднимается и отходит от стены, следовательно, реакция стержня 1 направлена к стене.

  2. Убираем стержень 2, точка А поднимается и приближается к стене, следовательно, реакция стержня 2 направлена от стены вниз.

  3. Канат тянет вправо.

  4. Освобождаемся от связей (рис. 1.13, б).

Пример 2. Шар подвешен на нити и опирается на стену (рис. 1.14а). Определить реакции нити и гладкой опоры (стенки).

Решение

    1. Реакция нити — вдоль нити к точке В вверх (рис. 1.14, б).

    2. Реакция гладкой опоры (стен­ки) — по нормали от поверхности опоры.

Пример 3. Представим, что на горизонтально расположенный брус АБ, собственной массой которого пренебрегаем, действует вертикальная нагрузка F, приложенная в точке С бруса (рис. 1.14-1, а). Левый конец бруса А прикреплен к опоре шарниром, а правый В опира­ется на гладкую наклонную плоскость.

Изобразим брус схематично отрезком АВ, как на рис. 1.14-1, б, и приложим к нему в точке С вертикальную силу F. В точке В со стороны наклонной плоскости к брусу приложена ее реакция RB, направленная перпендикулярно плоскости; линии действия сил F и RB пересекаются в точке О. Кроме этих сил на брус действует еще одна сила — реакция шарнирно-неподвижной опоры. А так как брус находится в равновесии, то линия действия третьей силы также пройдет через точку О, т. е. реакция R шарнир-но-неподвижной опоры направлена вдоль отрезка АО.

Примененный здесь метод рассуждения называется принципом освобождения тела от связей и замены связей их реакциями.

Пример 4. Определить усилие в стержне CD и силу давления груза А на опорную плоскость EF (рис. 1.14-2, а). Массой стержня CD, блока К, каната и трением каната о блок пренебречь.

Решение

Натяжение кана­та во всех его точках одина­ково и равно силе тяжести груза В, так как неподвиж­ный блок изменяет только направление силы, действую­щей на канат.

Рассмотрим равновесие си­стемы: стержень CD и блок К с прилегающим к нему отрезком каната ML. Отбросим связи и заменим их действие соответствующими реакциями (рис. 1.14-2, 6). Для полученной системы сил можно соста­вить только одно уравнение равновесия:

На рис. 1.14-2, в показаны силы, действующие на груз А с прилегающим к нему отрезком каната ОН. REF реак­ция опорной плоскости.

Так как груз А находится в равновесии, то

откуда

Rеf = Pa – Рв = 600 – 400 = 200 Н.

Сила давления груза А на опорную плоскость RA показана на рис, 1.14-2, г. Очевидно, RA = REF = 200 H (сила действия равна силе противодействия).

Пример 5. Определить реакции стержней, удерживающих грузы F1 = 70 кН и F2 = 100 кН (рис. а). Массой стержней пренебречь.