
- •Л екция 9 Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 10 Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Кинематические графики
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 11 Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 12 Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Примеры решения задач
- •Решение
- •Решение
- •Плоскопараллельное движение тела
- •Решение
- •Решение
- •Р ешение
- •Решение
Решение
П
редставим траекторию движения точки, как показано на рис. 5. Весь путь, пройденный точкой, разбиваем на участки равноускоренного (по отрезку АВ), равнозамедленного (по дуге ВС) и равномерного (по отрезку CD) движения.
Рассмотрим движения точки по отрезку АВ:
Рассмотрим движение точки по дуге ВС:
Рассмотрим движение точки на отрезке CD:
Определим среднюю скорость точки на всем пути по траектории движения ABCD (см. рис. 5):
tABCD = tAB + tBC + tCD = 25 + 20 + 5 = 50 c
6. Определим значение полного ускорения точки через 5 с после начала равнозамедленного движения (см. положение К на рис. 5)
Полное ускорение
Пример 7. Тело начало вращаться из состояния покоя и через 15 с его угловая скорость достигла 30 рад/с. С этой угловой скоростью тело вращалось 10 с равномерно, а затем стало вращаться равнозамедленно в течение 5 с до полной остановки.
Определить:
1) число оборотов и среднюю угловую скорость тела за все время вращения;
2) окружную скорость точек тела, расположенных на расстоянии r = 0,5 м от оси вращения тела через 5 с после начала движения.
Решение
Разграничим вращательное движение данного тела на участки равноускоренного, равномерного и равнозамедленного движения. Определим параметры вращательного движения тела по этим участкам.
Равноускоренное вращение (участок 1):
Равномерное вращение (участок II):
Равнозамедленное вращение (участок III):
Определим полное число оборотов тела за все время вращения:
Определим среднюю угловую скорость тела за все время вращения:
7. Определим окружную скорость точек тела, расположенных на расстоянии r = 0,5 м от оси вращения через 5 с после начала движения тела:
Пример 8. Диск радиусом R = 2 м вращается вокруг неподвижной оси согласно уравнению
(φ — в радианах, t — в секундах). Определить скорость и ускорение точки поверхности диска в моменты времени t1 = 0 и t2 = 2 с.
Решение
Для определения скорости и ускорения точки необходимо знать угловую скорость и угловое ускорение диска.
Уравнение изменения угловой скорости диска:
Уравнение изменения углового ускорения диска:
Определим угловую скорость и угловое ускорение диска в моменты времени t1 = 0 и t2 = 2 с:
Определим скорость точки поверхности диска в указанные моменты времени:
Определим нормальное и касательное ускорения точки поверхности диска в моменты времени t1 и t2:
Тогда
П
ример
9. Точка А, лежащая на ободе
равномерно вращающегося шкива,
движется со скоростью v
= 2 м/с и нормальным ускорением ап
= 5 м/с2. Определить радиус
шкива OA и величину угловой
скорости (рис. 1.46).
Решение
Здесь для решения следует воспользоваться известными соотношениями для линейной скорости и нормального ускорения точек вращающегося тела:
Если второе уравнение разделить на первое, найдем угловую скорость вращения шкива:
Тогда
Пример 10. Шарик А (рис. 1.47), подвешенный на стержне OA, колеблется в вертикальной плоскости около неподвижной горизонтальной оси О согласно уравнению
(φ — в радианах, t — в секундах).
Определить:
Ближайшие моменты времени, соответствующие максимальным отклонениям стержня OA от вертикали OC вправо и влево, а также значение максимальных углов отклонения.
Ближайший момент времени после начала движения, при котором нормальное ускорение шарика равно нулю.
Ближайший момент времени, при котором касательное ускорение шарика равно нулю.
Полное ускорение шарика при t = 1,5 с и угол, образованный вектором ускорения со стержнем OA.