
- •Л екция 9 Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 10 Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Кинематические графики
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 11 Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Лекция 12 Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Примеры решения задач
- •Решение
- •Решение
- •Плоскопараллельное движение тела
- •Решение
- •Решение
- •Р ешение
- •Решение
Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры движения точки А, расположенной на расстоянии r а от оси вращения (рис. 11.6, 11.7).
Путь точки A: SA = ωrА
Линейная скорость точки A: vA = ωrА
Ускорения точки A: atA = εrА — касательное;
апA = ω2 rА — нормальное, где rА — радиус окружности, траектории точки А.
Примеры решения задач
Пример 1. По заданному графику угловой скорости (рис. 11.8) определить вид вращательного движения.
Решение
Участок 1 — неравномерное ускоренное движение,
ω = φ/; е = ω/.
2. Участок 2 — скорость постоянна — движение равномерное, ω = const.
3. Участок 3 — скорость убывает равномерно — равнозамедленное движение, е = ω/ < 0.
Пример 2. Ротор электродвигателя вращается со скоростью, описываемой уравнением
ω = πt.
Определить вид движения.
Решение
1. Анализируем выражение для скорости: скорость меняется и зависит от времени линейно. Следовательно, угловое ускорение — постоянно, е = ω' = 2π = const.
2. Движение равнопеременное (равноускоренное, т.к. ускорение положительно).
Пример 3. Тело вращалось равноускорено из состояния покоя и сделало 360 оборотов за 2 мин. Определить угловое ускорение.
Решение
Один оборот равен 2π радиан. Следовательно:
360 оборотов = 720π рад, φ = 720π рад.
З
акон равнопеременного вращательного движения
Пример 4. Тело вращалось с угловой частотой 1200 об/мин. Затем движение стало равнозамедленным, и за 30 секунд скорость упала до 900 об/мин. Определить число оборотов тела за это время и время до полной остановки. Использовать пункт 1 примера 3.
Решение
1. Построить график изменения скорости за 30 с (рис. 11.9).
О
пределяем
угловую скорость вращения тела:
Определяем угловое ускорение:
Определяем угол поворота за прошедшее время:
Число оборотов за 30 с:
2. Определяем время до полной остановки.
Скорость при остановке равна нулю, ω = 0.
Таким образом, ω = ω0 + et 0 = ω0 + et
Тогда t0CT = -ω0/ε tocr = 40π*3/π = 120 c.
Пример 5. Маховое колесо вращается равномерно со скоростью 120 об/мин (рис. 11.10). Радиус колеса 0,3 м. Определить скорость и полное ускорение точек на ободе колеса, а также скорость точки, находящейся на расстоянии 0,15 м от центра.
Решение
Касательное ускорение точки A atA = 0; нормальное ускорение точки А аnA = ω2rA
апA = (12,56)2 • 0,3 = 47,3м/с2. 5. Полное ускорение точек на ободе колеса
Пример 6. Точка начала двигаться равноускорено по прямой из состояния покоя и через 25 с ее скорость стала равна 50 м/с. С этого момента точка начала равнозамедленное движение по дуге окружности радиуса г = 200 м и через 20 с ее скорость снизилась до 10 м/с. После этого точка продолжила свое движение с этой скоростью по прямой и через 5 с внезапно остановилась.
Определить: 1) среднюю скорость точки на всем пути;
2) полное ускорение точки через 10 с после начала ее равнозамедленного движения по окружности.