
- •Конспект лекций по дисциплине «Сопротивление материалов»
- •Часть II
- •Установочная лекция к модулю №7 «Статически неопределимые системы. Метод сил. Приложение к трем простым видам деформации: растяжение-сжатие, изгиб, кручение»
- •7.1.Понятие статической неопределимости
- •7.2.Метод сил
- •Алгоритм метода сил
- •1. Образование основной системы.
- •2. Образование эквивалентной системы.
- •3. Запись условия эквивалентности.
- •4. Определение коэффициентов системы канонических уравнений метода сил.
- •5. Решение скумс относительно неизвестных.
- •6. Построение эпюр всф.
- •7. Деформационная проверка правильности раскрытия статической неопределимости.
- •7.3.Учет влияния температуры и неточности изготовления элементов
- •7.4.Учет симметрии при раскрытии статической неопределимости
- •Установочная лекция к модулю №8 «Основы теории напряженно-деформированного состояния. Теории предельного состояния. Общий случай нагружения»
- •7.1.Основы теории напряженно-деформированного состояния в точке
- •7.1.1.Понятие о напряженном состоянии в точке
- •7.1.2.Определение напряжений на произвольной площадке
- •7.1.3.Главные оси и главные напряжения
- •Классификация напряженных состояний в точке
- •Эллипсоид напряжений
- •7.1.4.Понятие о деформированном состоянии
- •7.1.5.Обобщенный закон Гука для случая объемного напряженного состояния
- •7.1.6.Потенциальная энергия деформации для случая объемного напряженного состояния
- •7.1.7.Решение плоской задачи о.К. Мора Прямая задача Мора
- •Обратная задача Мора
- •7.2.Теории предельного состояния
- •7.2.1.Назначение теорий предельного состояния
- •7.2.2.Теории хрупкого разрушения
- •7.2.3.Теории пластичности
- •7.2.4.Универсальная теория Мора
- •7.3.Общий случай нагружения
- •Алгоритм расчета на прочность
- •1. Определение положения опасного сечения.
- •2. Определение вида деформации в опасном сечении.
- •3. Определение положения опасной точки в опасном сечении.
- •4. Определение вида напряженного состояния в опасных точках.
- •5. Вычисление эквивалентного напряжения в опасных точках.
- •6. Запись условия прочности в наиболее опасной точке
- •Установочная лекция к модулю №9 «Устойчивость сжатых стержней»
- •7.4.Понятие об устойчивости. Основные виды потери устойчивости
- •Основные виды потери устойчивости
- •7.5.Задача Эйлера
- •7.6.Влияние условий закрепления на величину критической силы
- •7.7.Условие равноустойчивости
- •7.8.Пределы применимости формулы Эйлера. Формула Ясинского
- •7.9.Коэффициент запаса по устойчивости. Виды расчета на устойчивость
- •Алгоритм поверочного расчета
- •Алгоритм проектировочного расчета
- •Установочная лекция к модулю №10 «Выносливость»
- •7.10.Понятие об усталости и выносливости
- •7.11.Характеристики цикла напряжений
- •7.12.Предел выносливости
- •7.13.Диаграмма предельных амплитуд
- •7.14.Влияние различных факторов на предел выносливости
- •7.14.1.Влияние концентрации напряжений
- •7.14.2.Влияние размеров изделия
- •7.14.3.Влияние состояния поверхности
- •7.14.4.Эксплуатационные факторы
- •7.14.5.Совместное влияние всех факторов
- •7.15.Расчет на прочность при переменном изгибе и кручении
- •7.16.Расчет на циклическую прочность в условиях сложного напряженного состояния Теоретический подход
- •Эмпирический подход
- •7.17.Алгоритм поверочного расчета на усталость
- •Установочная лекция к модулю №11 «Колебания. Удар»
- •7.18.Основы теории колебаний
- •7.18.1.Классификация механических колебаний
- •7.18.2.Свободные колебания упругой системы с одной степенью свободы
- •7.18.3.Свободные колебания упругой системы с одной степенью свободы с учетом сил сопротивления
- •7.18.4.Вынужденные колебания упругой системы с одной степенью свободы
- •7.19.Удар
- •7.19.1.Теория удара Лепина
- •7.19.2.Частные случаи удара
- •7.19.3.Расчет на прочность и жесткость при ударе
- •Алгоритм расчета на прочность и жесткость при ударе
- •Конспект лекций по дисциплине «Сопротивление материалов»
- •Часть II
7.4.Учет симметрии при раскрытии статической неопределимости
Определим, прежде всего, для статически неопределимых систем следующие виды симметрии:
Симметричная система с симметричной нагрузкой:
Здесь и сама система и приложенная к ней нагрузка зеркально симметричны относительно оси симметрии у.
Симметричная система с кососимметричной нагрузкой:
Здесь, в отличие от предыдущего случая, при зеркальной симметрии относительно оси у, направление приложенных сил получается противоположное.
Кососимметричная система с симметричной нагрузкой:
Здесь,
при повороте одной половины системы
относительно центра симметрии О на
,
она полностью совпадает со второй своей
половиной. Направление сил при этом
тоже совпадает.
Кососимметричная система с кососимметричной нагрузкой:
Здесь, в отличие от предыдущего случая, при повороте на половинки системы совпадают, но направление сил получается противоположное.
Для статически неопределимых систем, обладающих одним из перечисленных видов симметрии, процесс раскрытия статической неопределимости существенно упрощается, если рассматривать саму систему как внутренне статически неопределимую. Для этого необходимо образовать основную систему путем разрезания исходной системы по оси или по центру симметрии на две статически определимых системы.
Проследим применение алгоритма метода сил на примере симметричной системы с симметричной нагрузкой.
Исходная система:
Основная система:
Эквивалентная система:
При таком выборе основной системы в качестве «лишних» неизвестных выступают внутренние силовые факторы в проведенном сечении, причем, продольная сила Х1 и изгибающий момент Х3 – симметричные ВСФ, а поперечная сила Х2 – кососимметричный внутренний силовой фактор.
Построим вспомогательные эпюры: грузовую и единичные.
Грузовая эпюра МF:
симметричная эпюра
Единичные эпюры M1, М2 и М3:
симметричная
эпюра
кососимметричная
эпюра
симметричная
эпюра
Эпюры M1, М3 и МF, построенные от действия симметричных силовых факторов являются симметричными эпюрами, а эпюра М2, построенная от действия кососимметричного силового фактора, является кососимметричной эпюрой.
Очевидно,
что коэффициенты СКУМС, полученные
путем «перемножения» симметричной
эпюры на кососимметричную, равны нулю,
т.е.
.
Тогда система канонических уравнений
метода сил примет следующий вид:
Эта система трех уравнений с тремя неизвестными распадается на две более простые подсистемы, решить которые существенно проще:
Таким образом, учет симметрии понижает степень статической неопределимости.
Установочная лекция к модулю №8 «Основы теории напряженно-деформированного состояния. Теории предельного состояния. Общий случай нагружения»
7.1.Основы теории напряженно-деформированного состояния в точке
7.1.1.Понятие о напряженном состоянии в точке
Напряженным состоянием в точке называется совокупность напряжений, действующих на всех возможных площадках, которые можно провести через эту точку.
Рассмотрим
тело произвольной формы, нагруженное
самоуравновешенной системой сил
.
Попробуем охарактеризовать напряженное состояние в произвольной точке С тела. С этой целью, выделим в окрестностях этой точки элементарный объём в виде куба с бесконечно малыми гранями. На каждой грани куба действуют внутренние силы, которые представим в виде трех составляющих вектора полного напряжения:
На невидимых гранях куба действуют такие же по величине, но противоположные по направлению напряжения. Полученные девять напряжений, называемых компонентами напряженного состояния, образуют так называемый тензор напряжений:
,
в котором, в соответствии с законом парности касательных напряжений,
Таким образом, напряженное состояние в точке в общем случае нагружения может быть охарактеризовано шестью компонентами напряжений: тремя нормальными и тремя касательными.