
- •Конспект лекций по дисциплине «Сопротивление материалов»
- •Часть II
- •Установочная лекция к модулю №7 «Статически неопределимые системы. Метод сил. Приложение к трем простым видам деформации: растяжение-сжатие, изгиб, кручение»
- •7.1.Понятие статической неопределимости
- •7.2.Метод сил
- •Алгоритм метода сил
- •1. Образование основной системы.
- •2. Образование эквивалентной системы.
- •3. Запись условия эквивалентности.
- •4. Определение коэффициентов системы канонических уравнений метода сил.
- •5. Решение скумс относительно неизвестных.
- •6. Построение эпюр всф.
- •7. Деформационная проверка правильности раскрытия статической неопределимости.
- •7.3.Учет влияния температуры и неточности изготовления элементов
- •7.4.Учет симметрии при раскрытии статической неопределимости
- •Установочная лекция к модулю №8 «Основы теории напряженно-деформированного состояния. Теории предельного состояния. Общий случай нагружения»
- •7.1.Основы теории напряженно-деформированного состояния в точке
- •7.1.1.Понятие о напряженном состоянии в точке
- •7.1.2.Определение напряжений на произвольной площадке
- •7.1.3.Главные оси и главные напряжения
- •Классификация напряженных состояний в точке
- •Эллипсоид напряжений
- •7.1.4.Понятие о деформированном состоянии
- •7.1.5.Обобщенный закон Гука для случая объемного напряженного состояния
- •7.1.6.Потенциальная энергия деформации для случая объемного напряженного состояния
- •7.1.7.Решение плоской задачи о.К. Мора Прямая задача Мора
- •Обратная задача Мора
- •7.2.Теории предельного состояния
- •7.2.1.Назначение теорий предельного состояния
- •7.2.2.Теории хрупкого разрушения
- •7.2.3.Теории пластичности
- •7.2.4.Универсальная теория Мора
- •7.3.Общий случай нагружения
- •Алгоритм расчета на прочность
- •1. Определение положения опасного сечения.
- •2. Определение вида деформации в опасном сечении.
- •3. Определение положения опасной точки в опасном сечении.
- •4. Определение вида напряженного состояния в опасных точках.
- •5. Вычисление эквивалентного напряжения в опасных точках.
- •6. Запись условия прочности в наиболее опасной точке
- •Установочная лекция к модулю №9 «Устойчивость сжатых стержней»
- •7.4.Понятие об устойчивости. Основные виды потери устойчивости
- •Основные виды потери устойчивости
- •7.5.Задача Эйлера
- •7.6.Влияние условий закрепления на величину критической силы
- •7.7.Условие равноустойчивости
- •7.8.Пределы применимости формулы Эйлера. Формула Ясинского
- •7.9.Коэффициент запаса по устойчивости. Виды расчета на устойчивость
- •Алгоритм поверочного расчета
- •Алгоритм проектировочного расчета
- •Установочная лекция к модулю №10 «Выносливость»
- •7.10.Понятие об усталости и выносливости
- •7.11.Характеристики цикла напряжений
- •7.12.Предел выносливости
- •7.13.Диаграмма предельных амплитуд
- •7.14.Влияние различных факторов на предел выносливости
- •7.14.1.Влияние концентрации напряжений
- •7.14.2.Влияние размеров изделия
- •7.14.3.Влияние состояния поверхности
- •7.14.4.Эксплуатационные факторы
- •7.14.5.Совместное влияние всех факторов
- •7.15.Расчет на прочность при переменном изгибе и кручении
- •7.16.Расчет на циклическую прочность в условиях сложного напряженного состояния Теоретический подход
- •Эмпирический подход
- •7.17.Алгоритм поверочного расчета на усталость
- •Установочная лекция к модулю №11 «Колебания. Удар»
- •7.18.Основы теории колебаний
- •7.18.1.Классификация механических колебаний
- •7.18.2.Свободные колебания упругой системы с одной степенью свободы
- •7.18.3.Свободные колебания упругой системы с одной степенью свободы с учетом сил сопротивления
- •7.18.4.Вынужденные колебания упругой системы с одной степенью свободы
- •7.19.Удар
- •7.19.1.Теория удара Лепина
- •7.19.2.Частные случаи удара
- •7.19.3.Расчет на прочность и жесткость при ударе
- •Алгоритм расчета на прочность и жесткость при ударе
- •Конспект лекций по дисциплине «Сопротивление материалов»
- •Часть II
7.19.Удар
Ударом называется взаимодействие тел, при котором силы взаимодействия резко нарастают или ослабевают за короткий промежуток времени. Удар относится к динамическим видам нагружения.
Можно выделить три вида задач об ударе:
Задачи об изменении параметров движения взаимодействующих тел, решаемые аппаратом механики недеформируемого твердого тела.
Задачи о напряжениях и деформациях, возникающих во взаимодействующих телах, решаемые аппаратом механики деформируемого твердого тела.
Задачи об определении свойств материалов при ударе.
В курсе «Сопротивление материалов» (как разделе механики деформируемого твердого тела) решаются ударные задачи только второго вида: производится расчет на прочность и жесткость элементов конструкций при ударном нагружении. Более общий подход к решению таких задач был предложен доктором технических наук, основателем кафедры «Сопротивление материалов» Тольяттинского политехнического института Георгием Федоровичем Лепиным.
7.19.1.Теория удара Лепина
Основные допущения:
Ударяющее тело абсолютно жесткое.
Материал ударяемого тела следует закону Гука.
Ударяемое тело имеет одну степень свободы.
Удар неупругий, т.е. ударяющее тело после удара не отскакивает, а движется совместно с ударяемым телом.
Кинетическая энергия ударяющего тела полностью переходит в потенциальную энергию деформации ударяемого тела, т.е. можно пренебречь контактными явлениями.
Деформация мгновенно распространяется по ударяемой системе, и все ее точки начинают движение одновременно, т.е. можно пренебречь волновыми явлениями.
Рассмотрим упругую систему в виде пружины длиной l и жесткостью c с грузом весом F1. Пружина образует с горизонтом угол a и под действием веса груза имеет деформацию d0. Абсолютно жесткое тело весом F движется со скоростью v под углом b к горизонту.
Определим перемещение упругой системы dд после удара (динамическое перемещение).
В соответствии с законом сохранения импульса, количество движения системы до и после удара одинаково. Проецируя количество движения на ось a, можно записать:
,
где V1 – скорость движения системы после соударения:
.
(11.1)
Воспользуемся теоремой о кинетической энергии:
T2 – T1 = I, (11.2)
где T1, T2 – кинетическая энергия в начале и конце ударного взаимодействия соответственно, I - работа всех сил на перемещении во время ударного взаимодействия.
Кинетическая энергия системы в начале взаимодействия равна
.
Подставляя сюда вместо V1 выражение (11.1), получим:
,
(11.3)
где
– кинетическая энергия ударяющего
тела.
В конце ударного взаимодействия система неподвижна, и ее кинетическая энергия T2=0.
Работа внешних сил складывается из работы силы тяжести и силы упругости пружины:
.
Работа силы тяжести системы на перемещении, вызванном ударом:
.
(11.4)
Рассмотрим
зависимость силы упругости Fу
от перемещения d.
По закону Гука
:
Как видно из графика, работа силы упругости на перемещении, вызванном ударом, определяется
.
Представим жесткость пружины в виде , где d11 – податливость упругой системы (перемещение точки соударения под действием единичной силы, приложенной по направлению перемещения во время ударного взаимодействия). Тогда работа сил упругости
.
(11.5)
Формула (11.2) с учетом выражений (11.3), (11.4) и (11.5) принимает вид:
,
откуда
,
,
.
Учитывая,
что
– статическое перемещение (перемещение
точки соударения под действием силы
тяжести взаимодействующих тел, приложенной
статически по направлению перемещения
во время ударного взаимодействия):
.
Поскольку
корни квадратного уравнения вида
равны
,
то
,
.
Таким образом, перемещение при ударе вычисляется по формуле:
,
(11.6)
где Kд – коэффициент динамичности:
(11.7)
В области упругих деформаций напряжение, возникающее при ударе
.
(11.8)