- •Конспект лекций по дисциплине «Сопротивление материалов»
- •Часть II
- •Установочная лекция к модулю №7 «Статически неопределимые системы. Метод сил. Приложение к трем простым видам деформации: растяжение-сжатие, изгиб, кручение»
- •7.1.Понятие статической неопределимости
- •7.2.Метод сил
- •Алгоритм метода сил
- •1. Образование основной системы.
- •2. Образование эквивалентной системы.
- •3. Запись условия эквивалентности.
- •4. Определение коэффициентов системы канонических уравнений метода сил.
- •5. Решение скумс относительно неизвестных.
- •6. Построение эпюр всф.
- •7. Деформационная проверка правильности раскрытия статической неопределимости.
- •7.3.Учет влияния температуры и неточности изготовления элементов
- •7.4.Учет симметрии при раскрытии статической неопределимости
- •Установочная лекция к модулю №8 «Основы теории напряженно-деформированного состояния. Теории предельного состояния. Общий случай нагружения»
- •7.1.Основы теории напряженно-деформированного состояния в точке
- •7.1.1.Понятие о напряженном состоянии в точке
- •7.1.2.Определение напряжений на произвольной площадке
- •7.1.3.Главные оси и главные напряжения
- •Классификация напряженных состояний в точке
- •Эллипсоид напряжений
- •7.1.4.Понятие о деформированном состоянии
- •7.1.5.Обобщенный закон Гука для случая объемного напряженного состояния
- •7.1.6.Потенциальная энергия деформации для случая объемного напряженного состояния
- •7.1.7.Решение плоской задачи о.К. Мора Прямая задача Мора
- •Обратная задача Мора
- •7.2.Теории предельного состояния
- •7.2.1.Назначение теорий предельного состояния
- •7.2.2.Теории хрупкого разрушения
- •7.2.3.Теории пластичности
- •7.2.4.Универсальная теория Мора
- •7.3.Общий случай нагружения
- •Алгоритм расчета на прочность
- •1. Определение положения опасного сечения.
- •2. Определение вида деформации в опасном сечении.
- •3. Определение положения опасной точки в опасном сечении.
- •4. Определение вида напряженного состояния в опасных точках.
- •5. Вычисление эквивалентного напряжения в опасных точках.
- •6. Запись условия прочности в наиболее опасной точке
- •Установочная лекция к модулю №9 «Устойчивость сжатых стержней»
- •7.4.Понятие об устойчивости. Основные виды потери устойчивости
- •Основные виды потери устойчивости
- •7.5.Задача Эйлера
- •7.6.Влияние условий закрепления на величину критической силы
- •7.7.Условие равноустойчивости
- •7.8.Пределы применимости формулы Эйлера. Формула Ясинского
- •7.9.Коэффициент запаса по устойчивости. Виды расчета на устойчивость
- •Алгоритм поверочного расчета
- •Алгоритм проектировочного расчета
- •Установочная лекция к модулю №10 «Выносливость»
- •7.10.Понятие об усталости и выносливости
- •7.11.Характеристики цикла напряжений
- •7.12.Предел выносливости
- •7.13.Диаграмма предельных амплитуд
- •7.14.Влияние различных факторов на предел выносливости
- •7.14.1.Влияние концентрации напряжений
- •7.14.2.Влияние размеров изделия
- •7.14.3.Влияние состояния поверхности
- •7.14.4.Эксплуатационные факторы
- •7.14.5.Совместное влияние всех факторов
- •7.15.Расчет на прочность при переменном изгибе и кручении
- •7.16.Расчет на циклическую прочность в условиях сложного напряженного состояния Теоретический подход
- •Эмпирический подход
- •7.17.Алгоритм поверочного расчета на усталость
- •Установочная лекция к модулю №11 «Колебания. Удар»
- •7.18.Основы теории колебаний
- •7.18.1.Классификация механических колебаний
- •7.18.2.Свободные колебания упругой системы с одной степенью свободы
- •7.18.3.Свободные колебания упругой системы с одной степенью свободы с учетом сил сопротивления
- •7.18.4.Вынужденные колебания упругой системы с одной степенью свободы
- •7.19.Удар
- •7.19.1.Теория удара Лепина
- •7.19.2.Частные случаи удара
- •7.19.3.Расчет на прочность и жесткость при ударе
- •Алгоритм расчета на прочность и жесткость при ударе
- •Конспект лекций по дисциплине «Сопротивление материалов»
- •Часть II
7.2.2.Теории хрупкого разрушения
Первая теория прочности – теория наибольших нормальных напряжений (теория Галилея).
Критерий равнопрочности: напряженные состояния равнопрочны по хрупкому разрушению, если у них равны наибольшие нормальные напряжения
.
Условие прочности при растяжении
.
Также можно использовать условие прочности для сжатия
.
Данная теория нашла подтверждение только для весьма хрупких материалов (камень, бетон, кирпич). Ее основным недостатком является неучет двух главных напряжений.
Вторая теория прочности – теория наибольших линейных деформаций (теория Мариотта).
Критерий равнопрочности: напряженные состояния равнопрочны по хрупкому разрушению, если у них равны наибольшие линейные относительные деформации
.
Согласно закону Гука, при одноосном напряженном состоянии
.
Наибольшую линейную относительную деформацию при произвольном напряженном состоянии запишем, используя обобщенный закон Гука:
.
Приравнивая правые части, получим эквивалентное напряжение по второй теории
.
Вторая теория применима только для хрупких материалов, в том числе для хрупких металлов.
7.2.3.Теории пластичности
Третья теория прочности – теория наибольших касательных напряжений (теория Кулона).
Критерий равнопрочности: напряженные состояния равнопрочны по наступлению недопустимых пластических деформаций, если у них равны наибольшие касательные напряжения
.
По формуле (8.2) касательное напряжение в случае плоского напряженного состояния определяется как:
,
из которой следует, что
.
При
одноосном напряженном состоянии
,
,
и
.
Приравнивая правые части полученных выражений, получим эквивалентное напряжение по третьей теории
.
Для случая плоского напряженного состояния, когда нормальное напряжение на одной из площадок равно нулю (изгиб с кручением), выразив главные напряжения через напряжения на произвольной площадке, условие прочности принимает вид:
.
Третья теория используется при расчете элементов конструкций, изготовленных из пластичных материалов. Ее недостатком является неучет главного напряжения σ2.
Четвертая теория прочности – теория удельной потенциальной энергии формоизменения – энергетическая теория (теория Мизеса – Генки).
Критерий равнопрочности: напряженные состояния равнопрочны по наступлению недопустимых пластических деформаций, если у них равны удельные потенциальные энергии формоизменения:
.
Используя приведенное в разделе 8.1.5 выражение для потенциальной энергии изменения формы (8.1) для одноосного и объемного напряженного состояния, получим
,
откуда эквивалентное напряжение по четвертой теории
.
Для
случая плоского напряженного состояния
(
):
.
(8.6)
Выражая главные напряжения через напряжения на произвольных площадках для плоского напряженного состояния, когда на одной из площадок нормальное напряжение равно нулю, получим:
и
.
Подставляя полученные выражения в формулу (8.6), условие прочности можно записать в виде:
.
Энергетическая теория хорошо согласуется с экспериментальными данными (лучше, чем третья теория), и широко используется для пластичных материалов.
