Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Комплексные соединения.docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
70.25 Кб
Скачать

2. Комплексообразование

Существует два основных подхода к теории образования комплексных соединений. С позиций электростатического подхода, ведущего свое начало от немецкого ученого Косселя, образование комплексного соединения происходит за счет кулоновского притяжения частиц и их взаимной поляризации. Например, при взаимодействии аммиака с HCl ион водорода одновременно притягивается и ионом хлора и азотом аммиака. Так как притяжение азотом выражено более сильно, образуется соль аммония с катионом NH4+ и анионом Cl --, на которые она и распадается в растворе.

Недостаточность только такого представления для объяснения образования NH4Cl вытекает из того, что азот аммиака имеет меньший эффективный отрицательный заряд, чем ион хлора, и деформируемость молекулы NH3меньше, чем этого иона. Следовательно, протон должен был бы прочнее связываться с Cl--, чем с азотом аммиака.

Другой подход к теории комплексообразования был намечен американским химиком Льюисом, и особенно развит Сиджвиком. В основе этого подхода лежит допущение возможности существования донорно-акцепторной или координативной связи. По этим представлениям, обладающие свободными электронными парами атомы имеют тенденцию использовать их для связи с другими частицами. Вместе с тем не обладающие законченной электронной конфигурацией атомы имеют тенденцию пополнять свой внешний электронный уровень за счет использования чужих электронных пар. Атомы первого типа носят названия доноров, второго -- акцепторов. Если эти тенденции выражены достаточно сильно, то между атомами возникает связь за счет электронной пары донора. Например, образование иона NH4+ происходит за счет свободной электронной пары атома N и имеет место потому, что азот аммиака является лучшим донором, чем ион хлора.

Рассмотрим, например, как происходит образование типичной комплексной соли K2[PtCl]6, являющейся продуктом соединения хлорида платины PtCl4 с хлоридом калия, с точки зрения электростатической теории.

При взаимодействии платины с хлором каждый атом платины отдает четыре электрона атомам хлора, превращаясь в ион четырехвалентной платины. Образовавшиеся ионы связываются с получающимися одновременно с ними ионами хлора, образуя соль PtCl4.

Но присутствие четырех ионов хлора отнюдь не лишает ион платины способности действовать на другие ионы хлора. Поэтому, если последние оказываются поблизости, ион платины сейчас же начинает их притягивать. Однако каждый приближающийся к иону платины ион хлора испытывает в тоже время отталкивание со стороны уже связанных с платиной четырех ионов хлора. Если сила притяжения со стороны иона платины больше силы отталкивания, происходит присоединения новых ионов хлора. По мере их присоединения отталкивающая сила растет, и в тот момент, когда она превысит силу притяжения, присоединения новых ионов прекратится. В данном случае этот момент наступает, когда с ионом платины свяжутся шесть ионов хлора. Образовавшаяся группа из одного иона платины и шести ионов хлора содержит два избыточных отрицательных заряда и представляет собой комплексный ион [PtCl6]2--. После присоединения к нему двух положительных ионов калия, попадающих уже во внешнюю сферу, получается комплексная соль K2[PtCl]6.

Так же объясняется и присоединение к комплексообразователю нейтральных молекул. Обычно в образовании комплексных ионов участвуют молекулы, являющиеся ясно выраженными диполями. Под действием электрического поля комплексообразователя диполи определенным образом ориентируются по отношению к нему и затем притягиваются противоположно заряженными полюсами, образуя комплексный ион; поскольку взаимное отталкивание полярных молекул гораздо слабее, чем взаимное отталкивание ионов, то стойкость таких комплексов часто оказывается очень высокой.

Таким образом, согласно электростатической теории, образование комплексных ионов и комплексных соединений обусловливается действием тех же электростатических сил, за счет которых происходит образование более простых бинарных соединений. Различны только механизмы этих процессов. При образовании простых бинарных соединений связь образуется в результате перехода электронов от одних атомов к другим, после чего образовавшиеся ионы связываются благодаря взаимному притяжению разноименных зарядов. В образовании же комплексных соединений участвуют уже готовые ионы или полярные молекулы, то есть перехода электронов здесь не происходит.

Другую теорию образования комплексных соединений можно рассмотреть на примере образования катиона аммония. Азот в молекуле аммиака обладает свободной парой электронов и при появлении катиона водорода он отдает эту пару ему. В результате за счет появления донорно-акцепторной связи образуется катион аммония. Донором здесь является азот молекулы аммиака, а акцептором -- катион водорода.

Таким образом, донорно-акцепторная связь в комплексном ионе отличается от обычной ковалентной лишь происхождением общей пары электронов. В то время как при обыкновенной ковалентной связи каждый из соединяющихся атомов предоставляет для пары по одному электрону, при образовании комплексных соединений связь осуществляется за счет пары электронов, ранее принадлежащей только одному из соединяющихся атомов.

Оба подхода к теории комплексообразования не исключают, а взаимно дополняют друг друга. При комплексообразовании сближающиеся частицы первоначально взаимодействуют только за счет электростатических сил. Если частицы могут друг к другу на расстояние, примерно равное сумме радиусов сближающихся атомов, то становится возможным образование ковалентных и донорно-акцепторных связей, прочность которых возрастает по мере дальнейшего сближения частиц. То есть в общем случае связь, за счет которой происходит комплексообразование, можно рассматривать как сочетание электростатической и донорно-акцепторной связей. И лишь тогда, когда значение какого-либо из этих видов взаимодействия настолько доминирует, что практически допустимо считаться только с ним, становится приближенно правильным один из основных подходов к теории комплексообразования.