
- •Часть 1 - Физические основы электроники
- •Оглавление
- •Глава 1. Общие сведения об электронных приборах
- •Глава 2. Физические основы электроники. Электрофизические свойства полупроводников.
- •Глава 3. Полупроводниковые диоды
- •Глава 4. Биполярные транзисторы
- •Глава 5. Полевые транзисторы
- •Глава 6. Силовые полупроводниковые приборы
- •Глава 7. Оптоэлектронные приборы
- •Глава 8. Электровакуумные приборы
- •Глава 1 Общие сведения об электронных приборах
- •1.1 Назначение и классификация электронных приборов
- •1.Преобразование энергии (например, преобразование энергии света в электрическую энергию или преобразование переменного тока в постоянный);
- •1.2 Характеристики, параметры, эквивалентные схемы эп
- •Глава 2
- •Физические основы электроники
- •Электрофизические свойства полупроводников.
- •Электропроводность полупроводников
- •2.1 Собственные полупроводники
- •2.2 Примесные полупроводники
- •2.3. Токи в полупроводнике. Дрейф и диффузия
- •2.4 Электрические переходы.
- •2.4.1. Классификация электрических переходов
- •2.5 Образование p-n перехода. P-n переход в равновесном состояние
- •2.7. Математическая модель р-п –перехода. Вольт – амперная характеристика
- •2.8 Ёмкость p-n перехода
- •2.9 Пробой p-n перехода
- •Глава 3 Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика диода
- •3.2 Эквивалентная схема диода
- •3.3 Влияние температуры на вах диода
- •3.4 Выпрямительные диоды
- •3.5 Импульсные диоды
- •3.6 Диоды Шотки.
- •3.7 Стабилитроны и стабисторы
- •3.8 Варикапы
- •3.9. Туннельные и обращенные диоды
- •3.10 Маркировка полупроводниковых диодов
- •Глава 4
- •4.1 Общие сведения о биполярных транзисторах
- •4 .2 Принцип работы биполярного транзистора в активном режиме
- •4.3. Распределение концентрации носителей в базе. Влияние напряжений на переходах на токи транзистора
- •4.4. Режимы работы биполярного транзистора
- •4.5 Схемы включения биполярного транзистора
- •4.6 Математическая модель транзистора
- •4.7 Вольтамперные характеристики (вах) биполярного транзистора
- •4.8. Физические эквивалентные схемы транзистора и их параметры
- •4.9. Формальные схемы замещения транзистора и их параметры
- •4.10. Методика графического определения h – параметров транзистора
- •4.11. Зависимости характеристик и параметров транзистора
- •1.12. Собственные шумы электронных приборов
- •4.13. Предельно допустимые параметры транзистора
- •Глава 5
- •5.1. Основные сведения и классификация
- •5.2. Устройство и принцип действия и вах полевого транзистора с электронно-дырочным переходом
- •5.3. Полевые транзисторы с изолированным затвором
- •5.4. Вах полевого транзистора (математическая модель).
- •5.5. Дифференциальные параметры полевого транзистора и формальная схема замещения
- •5.6. Физическая эквивалентная схема полевого транзистора
- •5.7. Зависимость параметров полевого транзистора от режима работы и температуры
- •Глава 6 Силовые полупроводниковые приборы
- •Тиристоры делятся на две группы: диодные тиристоры (динисторы) и триодные (тиристоры). Для коммутации цепей переменного тока разработаны специальные симметричные тиристоры — симисторы
- •6.1. Тиристоры
- •Структура диристора, вах и принцип работы
- •Глава 7
- •3.Оптроны.
- •7.1.Фотоприемные устройства Фотоприемные устройства предназначены для преобразования светового излучения в электрические сигналы. В основу работы фотоприемников положны следующие физические явления:
- •7.1.1. Фоторезистор
- •7.1.2. Фотодиоды
- •7.1.2. Фототранзисторы:
- •7.1.3. Фототиристоры
- •7.2 Светоизлучающие приборы
- •7.2.1. Светоизлучающие диоды
- •7.2.2. Полупроводниковые лазерные диоды
- •7.3. Оптроны
- •7.4. Световоды
- •7.5. Знакосинтезирующие индикаторы
- •Глава 8 электровакуумные приборы
- •8.1. Общие сведения
- •8.2. Вакуумный диод
- •8.3. Триод
- •8 .4. Тетроды и пентоды
- •8.5. Электронно-лучевые трубки
2.4 Электрические переходы.
2.4.1. Классификация электрических переходов
Э
лектрический
переход в полупроводнике – это граничный
слой между двумя областями полупроводника
с различным физическими свойствами.
1. p-n переход - возникает на границе между двумя областями полупроводника с разным типом проводимости.
2. n+-n или p+-p переходы - возникают между областями полупроводника с различной удельной проводимостью. Различают электронно – электронный и дырочно – дырочный переходы, знаком + - обозначена область, где концентрация выше.
3. Переход на границе металл-полупроводник. Если на границе областей металл- полупроводник n-типа работа выхода электронов из полупроводника Ап/п меньше работы выхода электронов из металла Ам (Ап/п Ам), то в области контакта электроны из полупроводника n-типа переходят в металл, образуя в нем избыточный отрицательный заряд, а приграничная область полупроводника n-типа оказывается заряженной положительно. Между зарядами возникает контактная разность потенциалов и электрическое поле, препятствующее переходу электронов в металл. В тоже время оно способствует переходу электронов из металла (неосновные носители) в полупроводник. Такой переход обладает выпрямительными свойствами и используется в диодах Шотки.
Если Ап/п Ам, то приграничные области не обеднены, а обогащены электронами. Их сопротивление оказывается малым, выпрямительными свойствами такой переход не обладает. Он называется омический контакт и используется для создания металлических контактов от областей полупроводника.
4. Гетеропереход - возникает между двумя разнородными полупроводниками, имеющими различную ширину запрещенной зоной.
Переход на границе металл- диэлектрик- полупроводник (МДП).
П
роцессы,
протекающие в системе МДП, связаны с
эффектом поля. Эффект поля состоит в
изменении концентрации носителей
заряда, а следовательно и проводимости
в приповерхностном слое полупроводника
под действием электрического поля
создаваемого напряжением Е (рис. .). В
системе МДП протекание тока невозможно.
Однако в отличие от металла заряд в
полупроводнике не сосредоточен на
поверхности, а равномерно распределен
в обьеме полупроводника.
Режим обогащения и режим обеднения. Приповерхностный слой с повышенной концентрацией свободных носителей заряда называется обогащенным, а с пониженной концентрацией – обедненным.
При положительной полярности на металле относительно полупроводника в полупроводнике n-типа происходит обогащение приповерхностного слоя электронами, а в полупроводнике p-типа - обеднение его дырками.
При отрицательной полярности на металле относительно полупроводника в полупроводнике n-типа приповерхностный слой обедняется электронами, а в полупроводнике p-типа – обогащается дырками.
Слой инверсной проводимости. Если в режиме обеднения продолжить увеличение напряжения, то процесс обеднения продолжится, (обедненный слой будет расширяться). В то же время в приповерхностный слой устремятся неосновные носители заряда из глубины полупроводника. Когда их концентрация превысит концентрацию основных носителей заряда, то можно говорить о смене типа проводимости приповерхностного слоя. Этот приповерхностный слой, образованный неосновными носителями заряда, называется слоем инверсной проводимости.
2.4.2. p-n переход
Механическим контактом двух полупроводников с различным типом проводимости p-n переход получить невозможно, так как:
а) поверхности полупроводников покрыты слоем окислом, который являтся диэлектриком.
б) всегда существует воздушный зазор, превышающий межатомное расстояние.
Наиболее распространены два способа получения p-n перехода.
а) Метод сплавления.
б) Диффузионный метод.
Рассмотрим способ (б). Наиболее распространена планарная конструкция p-n переходов, при которой p-n переход создаётся путём диффузии на одну из сторон пластины полупроводника.
Тонкая пластина подвергается термообработке, в результате чего появляется слой SiO2.
Используя методы фотолитографии, удаляют определённые участки в слое SiO2, создавая окна и напыляя туда акцепторную примесь.
3. В результате диффузии атомов примеси в полупроводнике n-типа образуется p-область, а между ними p-n переход. p-n переход.