
- •Часть 1 - Физические основы электроники
- •Оглавление
- •Глава 1. Общие сведения об электронных приборах
- •Глава 2. Физические основы электроники. Электрофизические свойства полупроводников.
- •Глава 3. Полупроводниковые диоды
- •Глава 4. Биполярные транзисторы
- •Глава 5. Полевые транзисторы
- •Глава 6. Силовые полупроводниковые приборы
- •Глава 7. Оптоэлектронные приборы
- •Глава 8. Электровакуумные приборы
- •Глава 1 Общие сведения об электронных приборах
- •1.1 Назначение и классификация электронных приборов
- •1.Преобразование энергии (например, преобразование энергии света в электрическую энергию или преобразование переменного тока в постоянный);
- •1.2 Характеристики, параметры, эквивалентные схемы эп
- •Глава 2
- •Физические основы электроники
- •Электрофизические свойства полупроводников.
- •Электропроводность полупроводников
- •2.1 Собственные полупроводники
- •2.2 Примесные полупроводники
- •2.3. Токи в полупроводнике. Дрейф и диффузия
- •2.4 Электрические переходы.
- •2.4.1. Классификация электрических переходов
- •2.5 Образование p-n перехода. P-n переход в равновесном состояние
- •2.7. Математическая модель р-п –перехода. Вольт – амперная характеристика
- •2.8 Ёмкость p-n перехода
- •2.9 Пробой p-n перехода
- •Глава 3 Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика диода
- •3.2 Эквивалентная схема диода
- •3.3 Влияние температуры на вах диода
- •3.4 Выпрямительные диоды
- •3.5 Импульсные диоды
- •3.6 Диоды Шотки.
- •3.7 Стабилитроны и стабисторы
- •3.8 Варикапы
- •3.9. Туннельные и обращенные диоды
- •3.10 Маркировка полупроводниковых диодов
- •Глава 4
- •4.1 Общие сведения о биполярных транзисторах
- •4 .2 Принцип работы биполярного транзистора в активном режиме
- •4.3. Распределение концентрации носителей в базе. Влияние напряжений на переходах на токи транзистора
- •4.4. Режимы работы биполярного транзистора
- •4.5 Схемы включения биполярного транзистора
- •4.6 Математическая модель транзистора
- •4.7 Вольтамперные характеристики (вах) биполярного транзистора
- •4.8. Физические эквивалентные схемы транзистора и их параметры
- •4.9. Формальные схемы замещения транзистора и их параметры
- •4.10. Методика графического определения h – параметров транзистора
- •4.11. Зависимости характеристик и параметров транзистора
- •1.12. Собственные шумы электронных приборов
- •4.13. Предельно допустимые параметры транзистора
- •Глава 5
- •5.1. Основные сведения и классификация
- •5.2. Устройство и принцип действия и вах полевого транзистора с электронно-дырочным переходом
- •5.3. Полевые транзисторы с изолированным затвором
- •5.4. Вах полевого транзистора (математическая модель).
- •5.5. Дифференциальные параметры полевого транзистора и формальная схема замещения
- •5.6. Физическая эквивалентная схема полевого транзистора
- •5.7. Зависимость параметров полевого транзистора от режима работы и температуры
- •Глава 6 Силовые полупроводниковые приборы
- •Тиристоры делятся на две группы: диодные тиристоры (динисторы) и триодные (тиристоры). Для коммутации цепей переменного тока разработаны специальные симметричные тиристоры — симисторы
- •6.1. Тиристоры
- •Структура диристора, вах и принцип работы
- •Глава 7
- •3.Оптроны.
- •7.1.Фотоприемные устройства Фотоприемные устройства предназначены для преобразования светового излучения в электрические сигналы. В основу работы фотоприемников положны следующие физические явления:
- •7.1.1. Фоторезистор
- •7.1.2. Фотодиоды
- •7.1.2. Фототранзисторы:
- •7.1.3. Фототиристоры
- •7.2 Светоизлучающие приборы
- •7.2.1. Светоизлучающие диоды
- •7.2.2. Полупроводниковые лазерные диоды
- •7.3. Оптроны
- •7.4. Световоды
- •7.5. Знакосинтезирующие индикаторы
- •Глава 8 электровакуумные приборы
- •8.1. Общие сведения
- •8.2. Вакуумный диод
- •8.3. Триод
- •8 .4. Тетроды и пентоды
- •8.5. Электронно-лучевые трубки
7.1.2. Фототранзисторы:
По своей структуре фототранзистор (ФТ) аналогичен биполярному, в котором переход коллектор – база представляет собой фотодиод.
На рис. приведены условное обозначение, эквивалентная схема, схема включения и семейство ВАХ фототранзистора.
К
онструктивно
ФТ выполнен так, что световой поток
освещает область базы. В результате
поглощения световой энергии, в ней
генерируются электронно-дырочные пары.
При этом неосновные носители втягиваются
в коллекторный переход, увеличивая ток
коллектора, а в базе остаются основные
носители заряда. Это создает их избыточный
заряд, что увеличивает прямое смещение
на эмиттерном переходе. Это приводит к
росту инжекции неосновных носителей
заряда в базе из области эмиттера.
Сравнивая,
вольтамперные характеристики фотодиода
видим, что они ничем не отличаются от
выходных характеристик биполярного
транзистора в схеме с общей базой. Это
не случайно. Характеристики фотодиода
при Ф
= 0 и
характеристики транзистора при
Iэ=
0 - это
характеристики запертого р-п
перехода (в транзисторе
- коллекторного
перехода).
При Iэ≠0 в базе биполярного транзистора растет концентрация неосновных носителей и соответственно растет ток коллектора (обратный ток коллекторного перехода). Разница же только в том, что в транзисторе концентрация неосновных носителей в базе растет за счет инжекции их из эмиттера, а в фотодиоде - за счет генерации носителей под действием света.
При включении ФТ по схеме с ОБ уравнение для токов имеет вид
Iбобщ к=h21бIбэ+Iк0+Iбфк
При включении ФТ по схеме с ОЭ уравнение для токов имеет вид
Iбобщ к=h21эIэб+I*к0+(1+h21э)Iбфк.
Так как, h21э-десятки, сотни единиц, то ток фотодиода Iбфк увеличивается в соответствующее число раз.
Основные параметры и характеристики ФТ и фотодиода аналогичны.
Основные достоинства фототранзисторов – высокая световая чувствительность, электрическая и технологическая совместимость с биполярными транзисторами.
Недостатки фототранзисторов:
1.Малое быстродействие, граничная частота fгр=103-105Гц.
2.Высокая зависимость от температуры темнового тока.
7.1.3. Фототиристоры
Это полупроводниковые приборы используемые для коммутации световым сигналом электрических цепей большой мощности.
Условное обозначение, схема включения и ВАХ приведены на рис. .
Конструктивно выполнено так, что свет попадает на обе области базы тиристора. При этом с ростом освещенности возрастают эмиттерные токи, что приводит к возрастанию коэффициентов α и включению тиристора.
Темновое
сопротивление – 108
Ом (запертое состояние), сопротивление
во включенном, открытом состоянии до
10-1
Ом. Время переключения 10-5
– 10-6
сек.
7.2 Светоизлучающие приборы
Светоизлучающие приборы используются как управляемые источники света.
Все источники света можно разделить на активные и пассивные. Активные - сами создают световой поток, а пассивные можно использовать только в режиме внешней подсветки.
В основе работы всех излучателей света лежат следующие физические явления:
температурное свечение – свечение нагретого тела (накальные индикаторы);
излучение, сопровождающее газовый разряд в газах (газоразрядные индикаторы);
электролюминесценция – это световое излучение, возникающее при воздействии электрического поля или тока;
индуцированное излучение.