Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Норфиз.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
258.05 Кб
Скачать

Билет 3

  1. В каком случае больше возрастет доставка кислорода к тканям - при увеличении в 2 раза частоты дыхательных движений или при увеличении в 2 раза дыхательного объема? Почему?

  1. Газообмен в легких. Парциальное давление кислорода и углекислого газа в альвеолярном воздухе и напряжение их в венозной и артериальной крови. Связывание кислорода гемоглобином. Характеристика гемоглобина новорожденных.

Перенос О2 из альвеолярного газа в кровь и CO2 из крови в альвеолярный газ происходит исключительно путем диффузии. Ее движущей силой служат разности (градиенты) парциальных давлений (напряжений) O2 и СО2 по обе стороны аэрогематического барьера, образованного альвеолокапиллярной мембраной. Никакого механизма активного транспорта газов здесь нет. Кислород и углекислый газ диффундируют в растворенном состоянии: все воздухоносные пути увлажнены слоем слизи. Важное значение для облегчения диффузии 02 имеет сурфактантная выстилка альвеол, так как кислород растворяется в фосфолипидах, входящих в состав сурфактантов, гораздо лучше, чем в воде. В ходе диффузии через аэрогематический барьер молекулы растворенного газа должны преодолеть: слой сурфактанта, альвеолярный эпителий, две основные мембраны, эндотелий кровеносного капилляра. Ввиду того что в транспорте дыхательных газов существенную роль играют эритроциты, к этому списку добавляются слой плазмы и мембрана эритроцита. Диффузионная способность легких для кислорода очень велика. Это обусловлено огромным числом (сотни миллионов) альвеол и большой их газообменной поверхностью (у человека она составляет около 100 м2), а также малой толщиной (порядка 1 мкм) альвеолокапиллярной мембраны. Диффузионная способность легких у человека равна примерно 25 мл О2/мин в расчете на 1 мм рт. ст. градиента парциальных давлений кислорода. При учете того, что градиент Ро2 между притекающей к легким венозной кровью и альвеолярным газом обычно превышает 50 мм рт. ст., этого оказывается вполне достаточно, чтобы за время прохождения через легочный капилляр (около 0,8 с) напряжение кислорода в ней успело уравновеситься с альвеолярным Ро2. Несколько более низкое (на 3—6 мм рт. ст.) артериальное Роз по сравнению с альвеолярным объясняется проникновением венозной крови в артериальную через невентилируемые альвеолы, а также артериовенозные шунты. Лишь при ускорении легочного кровотока, например при тяжелой мышечной работе, когда время прохождения крови через капилляры альвеол может сокращаться до 0,3 с, наблюдается недонасыщение крови кислородом в легких, что, однако, возмещается увеличением минутного объема крови. Что касается диффузии СО2 из венозной крови в альвеолы, то даже сравнительно небольшого градиента Рсо2, (6—10 мм рт. ст.) здесь оказывается вполне достаточно, так как растворимость углекислого газа в 20—25 раз больше, чем у кислорода. Поэтому после прохождения крови через легочные капилляры Рсо2 в ней оказывается почти равным альвеолярному — обычно около 40 мм рт. ст.

Большая часть кислорода переносится кровью в виде химического соединения с гемоглобином, один моль которого может связать до 4 молей кислорода. Т.е. 1 г гемоглобина может связать 1,39 мл кислорода. При анализе газового состава крови получают несколько меньшую величину - 1,34 - 1,36 мл кислорода на 1 г гемоглобина, так как некоторая часть гемоглобина находится в неактивном виде. Зная содержание гемоглобина, можно вычислить кислородную емкость крови . Максимальная ее величина составляет 0,20 л кислорода на 1 л крови. Однако такое содержание кислорода в крови может достигаться только в том случае, если кровь контактирует с газовой смесью с высоким содержанием кислорода, а в естественных условиях гемоглобин оксигенируется не полностью.

Гемоглобин, содержащий две а- и две В-цепи, называется А-тип (от adult — взрослый). 1 г гемоглобина А-типа связывает 1,34 мл O2. В первые три месяца жизни плода человека в крови содержатся эмбриональные гемоглобины типа Gower I (4 эпсилон цепи) и Gower II (2а и 25 цепи). Затем формируется гемоглобин F (от faetus — плод). Его глобин представлен двумя цепями а и двумя В. Гемоглобин F обладает на 20—30 % большим сродством к O2, чем гемоглобин А, что способствует лучшему снабжению плода кислородом. При рождении ребенка до 50—80 % гемоглобина у него представлены гемоглобином F и 15—40 % — типом А, а к 3 годам уровень гемоглобина F снижается до 2 %.

1 день--180-240 г/л

1 месяц 115-175 г/л

6 месяцев 110-140 г/л

1 год--110-135 г/л

  1. Характеристика хемо- и механорецепторов дыхательной системы, их роль в регуляции дыхания и смене фаз дыхательного цикла. Нарисовать схему рефлекторной регуляции дыхания. Механизм возникновения первого вдоха новорожденного.

Бульбарные хемочувствительные зоны. На вентролатеральной поверхности продолговатого мозга расположены нейрональные структуры, чувствительные к напряжению С02 и концентрации ионов H+ во внеклеточной жидкости мозга. Локальное воздействие этих факторов вызывает увеличение дыхательного объема и легочной вентиляции. Напротив, снижение Pco2 и подщелачивание внеклеточной жидкости мозга, а также блокирование холодом или разрушение этих структур ведет к полному или частичному исчезновению реакции дыхания на избыток С02 (гиперкапнию) и ацидоз, а также к резкому угнетению инспираторной активности вплоть до остановки дыхания. Артериальные хеморецепторы. В области бифуркации сонной артерии расположен так называемый сонный, или каротидный, гломус (клубок, тельце). Он обильно снабжается кровью и содержит сложно устроенный рецепторный аппарат, реагирующий на изменения газового состава артериальной крови: повышение напряжения СО2 (гиперкапнию), увеличение концентрации ионов Н+ (ацидоз) и меньше на снижение напряжения О2 (гипоксемию). Все три фактора, вызывая возбуждение каротидных хеморецепторов, усиливают активность центрального дыхательного механизма.

Механорецепторы дыхательной системы выполняют двоякую роль: во—первых, они участвуют в регуляции параметров дыхательного цикла — глубины вдоха и его длительности; во—вторых, эти рецепторы служат источником ряда рефлексов защитного характера — кашля, например. Рецепторы растяжения легких. эти Механорецепторы оказываются источником сигнализации о растяжении дыхательных путей, а следовательно, и легких. Ирритантные рецепторы.Эти рецепторы реагируют на резкие изменения объема легких, в частности на их спадение, которое вызывает рост инспираторной активности центрального механизма, прерывая таким путем выдох. Чувствительны они и к частицам пыли, скоплению слизи некоторым химическим раздражителям. Юкстаальвеолярные (юкстакапиллярные), или J—рецепторы. Эти рецепторы чувствительны к ряду биологически активных веществ (никотину, гистамину, простагландинам и др.), проникающим либо из воздухоносных путей, либо с кровью малого круга. Рецепторы верхних дыхательных путей. Они служат главным образом источником рефлексов защитного характера, возникающих при скоплении в воздухоносных путях слизи, попадании инородных тел и химических раздражителей (кашель, глотание, чихание).

В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.