
Графики
1. Графиком функции y = f(x) называется совокупность точек
координатной плоскости, координаты которых удовлетворяют
уравнению данной функции.
2. Графики часто встречающихся функций:
y = x y = –x
y = 2 x = 2
y = k∙x + b − прямая;
Прямую строим по двум точкам, придавая аргументу x два любых значения, а затем с помощью линейки проводим непосредственно прямую.
парабола квадратная парабола кубическая
y = x2 y = x3
(полупарабола)
две
гиперболы
показательная
функция
y = sin x
y = cos x
y = tg x
y = ctg x
y = sec x
y = cosec x
y = arcsin x y = arccos x
−1 ≤ x ≤ 1 ≤ arcsin x ≤ 0 ≤ arcos x ≤ π
y = arctg x
y = arcctg x
−∞ < x < +∞ < arctg x < 0 < arcctg x < π
Функция “целая часть” или “антье”:
функцией антье ( y = [x] или иногда y = a(x) ) называется функция, принимающая для каждого значения x значение, равное наибольшему целому числу, не превосходящего этого x. Н а п р и м е р:
[1,2] = 1; [2,5] = 2; [4,87] = 4; [5] = 5;
[0] = 0; [−0,18] = −1; [−3,74] = −4; [−7] = −7;
y = [ x ]
Функция “дробная часть”: y = {x} = x – [x];
П р и м е р ы: {2} = 0; {−3} = 0;
{3,65} = 3,65 – [3,65] = 3,65 – 3 = 0,65;
{−2,37} = −2,37 – [−2,37] = −2,37 − (−3) = −2,37 + 3 = 0,63;
эта функция периодическая, основной период T = 1;
y = { x }
3. Преобразование графиков:
1) y = f(x) + c;
Пусть дан график функции y = f(x).
Тогда график функции y = f(x) + c получается из данного графика
путём его вертикального переноса вдоль оси oy:
вверх на c единиц при c > 0;
вниз на │c│ единиц при c < 0;
2) y = f(x – a);
Горизонтальный перенос вдоль оси ox:
вправо на a единиц при a > 0;
влево на │a│ единиц при a < 0;
3) y = −f(x); Переворот вокруг оси ox.
4) y = f(−x); Переворот вокруг оси oy.
5) y = k∙f(x); k > 0;
Точки пересечения с осью ox остаются прежними.
Растяжение вдоль оси oy в k раз при k > 1.
Сжатие вдоль
оси oy
в
раз при 0 < k
< 1.
6) y = f(p∙x); p > 0;
Сжатие вдоль оси ox к оси oy в p раз при p > 1.
Растяжение
вдоль оси ox
от оси
oy
в
раз при 0 < p
< 1.
7) y = │f(x)│;
Части графика y = f(x) , расположенные ниже оси ox, отобразить
симметрично вверх относительно оси ox. После этого части графика
y = f(x) , расположенные ниже оси ox , отбросить.
8) y = f(│x│);
Строим график функции y = f(x) при x ≥ 0.
После этого симметрично отображаем его относительно оси oy.
Отбрасывать ничего не надо.
9) │y│ = f(x); (геометрическое место точек)
Строим сначала график функции y = f(x).
Части графика y = f(x) , расположенные ниже оси ox , отбрасываем.
К оставшимся частям достраиваем их отражения симметрично
относительно оси ox. (одному значению x соответствует два
значения y).
10) │y − b│ = f(x); (геометрическое место точек)
Строим сначала график │y│ = f(x).
После этого вертикально его переносим вдоль оси oy:
вверх на b единиц при b > 0;
вниз на │b│ единиц при b < 0;
4. График квадратного трёхчлена:
парабола y = a∙x2 + b∙x + c;
вершина параболы: точка A(x0 , y0)
x0 = −
y0 = a∙x + b∙x + c; (подставляем x0 в уравнение параболы)
направление ветвей параболы:
при a > 0 вверх;
при a < 0 вниз;
точка пересечения с осью oy: при x = 0 y = c;
точки пересечения с осью ox: корни x1 и x2;
5. График гиперболы (обязательно должно быть m ≠ 0) :
вертикальная асимптота: m∙x + n = 0; x = −
горизонтальная асимптота: y =
точка пересечения с осью oy: при x = 0 y = ; (при n ≠ 0)
если встречается случай n = 0, то гипербола не пересекает ось oy;
точка пересечения с осью ox: a∙x + b = 0; x = − (при a ≠ 0)
если a = 0, то гипербола не пересекает ось ox.
6. Окружность
а) уравнение: (x – a)2 + (y – b)2 = R2;
центр окружности находится в точке C(a ; b).
радиус окружности равен R;
б) уравнение: x2 + y2 = R2;
центр окружности находится в точке O(0 ; 0).
радиус окружности равен R;
7. Асимптоты графика функции
а) горизонтальные асимптоты
прямая y = a является горизонтальной асимптотой кривой y = f(x),
если
;
б) вертикальные асимптоты
прямая x = a является вертикальной асимптотой кривой y = f(x),
если
или
;
в) наклонные асимптоты
если кривая y = f(x) имеет наклонную асимптоту y = k∙x + b , то
;
;
8. Чётность и нечётность функции (укр. парність або непарність)
Функция y = f(x) называется:
чётной, если f(−x) = f(x);
нечётной, если f(−x) = −f(x).
График чётной функции обладает осевой симметрией относительно
оси oy.
График нечётной функции обладает центральной симметрией
относительно начала координат (поворот на 180°).