Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
stad_met_1-9.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
1.02 Mб
Скачать

14. Определение эмпирической функции распределения.

Выборочная (эмпири́ческая) фу́нкция распределе́ния в математической статистике - это приближение теоретической функции распределения, построенное с помощью выборки из него.

Определение

Пусть - выборка из распределения случайной величины , задаваемого функцией распределения . Будем считать, что , где , - независимые случайные величины, определённые на некотором пространстве элементарных исходов . Пусть . Определим случайную величину следующим образом:

,

где - индикатор события , - функция Хевисайда. Таким образом, выборочная функция распределения в точке равна относительной частоте элементов выборки, не превосходящих значение . Случайная величина называется выборочной функцией распределения случайной величины и является аппроксимацией для функции . Существует результат, показывающий, что при функция равномерно сходится к , и указывающий скорость сходимости.

15. Построение и свойства эмпирической функции распределения

Пусть зафиксирован элементарный исход . Тогда является функцией распределения дискретного распределения, задаваемого следующей функцией вероятности:

, где , а - количество элементов выборки, равных . В частности, если все элементы выборки различны, то .

Математическое ожидание этого распределения имеет вид:

.

Таким образом выборочное среднее - это теоретическое среднее выборочного распределения.

Аналогично, выборочная дисперсия - это теоретическая дисперсия выборочного распределения.

Случайная величина имеет биномиальное распределение:

.

Выборочная функция распределения является несмещённой оценкой функции распределения :

.

Дисперсия выборочной функции распределения имеет вид:

.

Согласно усиленному закону больших чисел, выборочная функция распределения сходится почти наверное к теоретической функции распределения:

почти наверное при .

Выборочная функция распределения является асимптотически нормальной оценкой теоретической функции распределения. Если , то

по распределению при .

16. Что такое параметры распределения.

Опишем некоторые параметры распределения.

Математическое ожидание (среднее значение) EX случайной величины X. Представляет собой интеграл вида

.

Для непрерывной случайной величины может быть выражено также через плотность ее распределения

,

а для дискретной случайной величины - через функцию вероятности:

.

Дисперсия (рассеяние) случайной величины X имеет вид

.

В классических методах теории риска дисперсия часто использовалась в качестве меры риска, измерителя рискованности проектов.

Стандартное отклонение случайной величины X задается выражением

.

Асимметрия распределения случайной величины X:

.

характеризует различие "хвостов" распределения; асимметрия положительна при более тяжелом правом хвосте, и отрицательна при более тяжелом левом хвосте. Для симметричных распределений асимметрия равна 0.

Островершинность распределения случайной величины X:

.

характеризует тяжесть "хвостов" распределения; положительные значения этого параметра соответствуют распределениям с более тяжелыми хвостами, чем у нормального распределения.

Медианой a = med(X) распределения случайной величины X называется корень уравнения

.

Медиана является средней характеристикой распределения в том смысле, что X с равными вероятностями принимает значения, лежащие справа и слева от a. Преимуществом медианы перед математическим ожиданием является тот факт, что математическое ожидание может быть неопределенным, если задающий его интеграл (в дискретном случае - ряд) расходится, как, например, в случае распределения Коши. Недостатком медианы является ее возможная неоднозначность для дискретных распределений. Медиана симметричного распределения совпадает с его средним значением (если последнее существует).

Модой распределения называется наиболее вероятное значение случайной величины: в непрерывном случае - точка максимума плотности распределения, в дискретном случае - точка максимума функции вероятности. Мода распределения может быть неоднозначной, и использование этого параметра в теории риска ограничено.

В разделе иллюстраций можно познакомиться с визуальным представлением средних значений треугольного распределения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]