- •Вопрос 1. Методика обучения математике в дочисловой период.
- •Задачи изучения темы.
- •Вопрос 2. Методика изучения нумерации чисел первого десятка
- •Вопрос 3. Методика изучения нумерации в концентре «Сотня»
- •Вопрос 4. Изучение нумерации трехзначных и многозначных чисел
- •Вопрос 5. Методика ознакомления со сложением и вычитанием.
- •Вопрос 6. Методика изучения сложения и вычитания в пределах 10.
- •Вопрос 7. Методика изучения сложения и вычитания однозначных чисел с переходом через десяток и соответствующие случаи вычитания.
- •Вопрос 8. Изучение сложения и вычитание в концентре «Сотня»
- •Вопрос 9. Сложение и вычитание трёхзначных и многозначных чисел
- •Многозначные числа
- •Вопрос 10. Методика первоначального ознакомления с действием умножения. Методика ознакомления с названиями чисел при умножении и зависимость между ними.
- •Вопрос 11. Методика обучения решению простых задач на умножение и деление, в которых задано отношение «больше в…», «меньше в…»
- •Вопрос 12. Раскрытие смысла деления и методика изучения зависимости между числами при делении. Частные случаи деления с 0 и 1.
- •Вопрос 13. Обучение табличному умножению и делению
- •Вопрос 14. Методика изучения внетабличных случаев умножения и деления в концентре «Сотня»
- •Вопрос 15. Методика изучения деления с остатком в пределах сотни
- •Вопрос 16. Методика изучения устных и письменных приемов умножения многозначных чисел на однозначные числа и числа, оканчивающиеся нулями.
- •Умножение на разрядные числа
- •Вопрос 17. Умножение многозначных чисел на двузначные и трехзначные числа.
- •Вопрос 18. Методика формирования устных и письменных приемов деления многозначного числа на однозначное, двузначное. Деление многозначных чисел на однозначные
- •Деление многозначных чисел на числа, оканчивающиеся нулями
- •Вопрос 19. Методика изучения числовых выражений и выражений, содержащих переменную.
- •Сравнение выражений
- •Вопрос 20. Формирование представлений об уравнении. Методика обучения решению уравнений и задач, решаемых уравнением.
- •Вопрос 21. Методика изучения геометрического материала в начальной школе.
- •Вопрос 22. Обучение учащихся общим приемам решения задач.
- •Выбор схемы.
- •Выбор вопросов
- •5) Выбор данных.
- •6) Изменение текста задачи в соответствии с данным решением
- •7)Объяснение выражений, составленных по данному условию
- •8) Выбор решения задачи
- •Вопрос 23. Методика знакомства с первой составной задачей и обучение решению составных задач.
- •Вопрос 24. Методика работы над простыми задачами с пропорциональными величинами (цена, количество, стоимость)
- •Вопрос 25. Простые задачи на сложение и вычитание. Методика работы над задачами на увеличение и уменьшение на несколько единиц.
- •Вопрос 26. Простые задачи на нахождение неизвестных компонентов. Методика работы над задачами этого класса.
- •Вопрос 27. Обучение решению задач на нахождение 4-го пропорционального. Организация деятельности учащихся при работе над задачами этого вида.
- •1. Ознакомление с содержанием
- •4. Самостоятельная запись решения задачи.
- •Вопрос 28. Обучение решению задач на пропорциональное деление и на нахождение неизвестной величины по двум разностям.
- •Вопрос 29. Методика работы над задачами на движение
- •Ознакомление с содержанием
- •3. Составление плана решения.
- •4. Запись решения
- •Вопрос 30. Основные величины в начальном курсе математики. Методика ознакомления с длиной и единицами длины.
- •Вопрос 31. Методика формирования представлений о массе и ее измерении
- •Вопрос 32. Методика изучения времени и его измерения.
- •Вопрос 33. Методика изучения темы «Площадь и ее измерение»
Вопрос 20. Формирование представлений об уравнении. Методика обучения решению уравнений и задач, решаемых уравнением.
В начальной школе рассматриваются уравнения, содержащие только одно действие. Первоначально они решаются подбором. В дальнейшем уравнения решаются на основе зависимости между компонентами и результатами действий.
В традиционной школе уравнения вводятся во втором классе, а в других системах – с начала обучения. Дети знакомятся с терминами «уравнение» и «решение уравнения». Для закрепления этих понятий предлагаются упражнения: «Выбери среди данных записей уравнения», «Преврати (составь) уравнения». Кроме этого включаются задания такого вида:
«Угадай корни: 7 + х = 7; 7 – у = 0; n – 0 = 7; а – а = 7; b – b = 0».
Методом составления уравнения решаются некоторые простые задачи: Площадь прямоугольника 36 см2, длина – 9 см. Найти его ширину.
В «Школе 2000» уравнения вводятся в 3 части 1 класса. Вначале выполняются привычные операции с множествами-«мешками»:
+ х = х = ,
и вводится термин «уравнение».
Опорой для решения уравнений являются понятия части и целого. В течение подготовительного периода учащиеся осваивают эти понятия в операциях с множествами и усваивают их соотношения: чтобы найти одну часть надо от целого отнять другую часть.
Последовательность введения уравнений такая же, как и в традиционной программе, но на одном уроке при закреплении могут встречаться уравнения разных видов, т.к. основа их решения похожа.
Помощниками в решении уравнениях являются:
1
)
рисунки весов 2 + х = 4
2) схемы 5 – х = 4 х + 3 = 7
3) числовые отрезки
4) уравнения с линиями
Кроме уравнений на нахождение части и целого, включены нестандартные уравнения:
26 + 26 + 26 = 26 . у ; у + у + у = 115 . 3;
145 . х = 145; 8 . х = 0 ; 5 . х = 45;
х : х = 1; х . 1 = х; 0 . х = 0; х : 0 = 0; х : 1 = х.
Во 2 классе. включены уравнения вида а . х = b, а : х = b, х : а = b
Основой для их решений является зависимость между сторонами прямоугольника и его площадью: чтобы найти сторону
16
2
Структура уравнений во 2 кл. не меняется, только изменяется числовое множество: 200 . х = 600.
В 3 кл. происходит обобщение знаний по уравнениям: вводится термин „уравнение“, „решение уравнения“ и рекомендуется решать их с комментированием:
(х+3) : 8 = 5
1. Неизвестное делимое х+3. Чтобы найти …
2. Упрощение…
3. Неизвестное…
Уравнения содержат 3-4 действия (m..4+6) : 9 = 2
При изучении дробей включены уравнения
,которые
решаются аналогично.
В системе РОЗ (М1А, стр. 19) вводятся термины «равенства», «неравенства», с помощью рисунков составляются верные равенства и неравенства. Неверные неравенства превращаются в верные.
Во второй четверти вводятся уравнения - дается определение уравнения, его решения (« решить уравнение – значит найти такое число, при котором получается верное равенство»). Первоначально рассматриваются уравнения вида
х + 5 = 9, которые вводятся через задачу.
Уравнения могут быть не стандартными:
( 5 + х ) + 2 = 11,где надо догадаться при сравнении равенств,
( 5 + 4 ) + 2 = 11,чему равно неизвестное.
В конце первого класса, дети знакомятся с уравнениями вида:
13 – х = 5 , 17 – а = 9, которые решаются на основе правил нахождения вычитаемого, а затем и уменьшаемого:
к – 4 = 7, к – 12 = 6.
Все виды этих уравнений даются в сравнении друг с другом:
а + 7 = 15, 15 – а = 7, а - 7 = 8,
надо выяснить связь этих уравнений и тогда найти решение.
Во втором классе продолжается работа над уравнениями, где надо найти самое большое число и воспользоваться обратными действиями:
а + 23 = 41 85 – к = 72
х . 7 = 56 е : 4 = 9
Уравнения, связанные с действиями умножения и деления решаются с помощью таблицы умножения (подбором).
Для решения уравнений другим способом изучаются основные свойства равенств:
1) а = b, a + c = b + c, a– c = b – c.
2) a = b, c
0
a .
c = b .
c,
a : c = b : c.
12х – х - 55 = 0
11х – 55 = 0
5 у + 7 = 62 5у + 7 = 62
Уравнения вида 5х + 15 = 80 – 8 х ,
,
7. (а – 1) = 3. (а + 9) решаются
на основе свойств равенств .
