
- •2.Современная формулировка периодического закона.
- •22. Устойчивость комплексных соединений в р-рах. Константы нестойкости и устойчивости комплексных ионов.
- •27.Кинетическая классификация хим реакций ( по признаку молекулярности и порядка).
- •28. Влияние концентрации на скорость хим реакции. Закон Гульберга и Вааге.
- •31.Механизм протекания р-ий. Энергия активации. Активированные комплексы.
- •32. Катализ и его виды. Примеры гомогенного и гетерогенного катализа.
- •33.Ферментативный катализ. Уравнения Михаэлиса-Ментен.
- •35.Окислители и восстановители.Простые и сложные вещества.Процессы окисления и восстановления.
- •43. Адсорбция. Поверхностно активные и неактивные вещества. Изотерма адсорбции Гиббса.
- •48 Общая характеристика s- элементов 1 группы
- •49 Общая характеристика s- элементов 2 группы
- •50 Отличительные свойства оксида и гидроксида бериллия
- •51 Общая характеристика р – элементов
- •52.Химизм токсического действия свинца.
- •53.Способ определения мышьяка по Маршу.
- •54.Свойства d-элементов.Качественные реакции на Fe,Cr,Mn,Cu.
№1 Предмет и задачи химии. Значение для современной медицины. Системы .
1)Химия - одна из важнейших и обширных областей естествознания, наука о веществах, их свойствах, строении и превращениях, происходящих в результате химических реакций, а также фундаментальных законах, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий. Предмет химии — химические элементы и их соединения, а также закономерности, которым подчиняются различные химические реакции. . Химия изучает состав, свойства и превращения веществ, а также явления, которые сопровождают эти превращения.Одно из первых определений химии как науки дал русский ученый М.В. Ломоносов: «Химическая наука рассматривает свойства и изменения тел... состав тел... объясняет причину того, чтос веществами при химических превращениях происходит
2)Помощь в диагностике и лечение (радиоактивные препараты , антибиотики), ускоренного анализа –физикохимический (приборы : гаматограф, полярограф), узучение буферных систем.
3)Термодинамическая система- любой объект природы состоящий из большого числа молекул и отделенных от других объектов реальной или воображаемой поверхностью
Термодинам. системы: изолированные системы, то есть системы, которые не обмениваются с окружающей средой ни энергией, ни веществом, и закрытые системы, которые обмениваются со средой только энергией, но не обмениваются веществом. Если же в системе происходят обменные процессы с окружающей средой, то её называют открытой.
№2 Первое начало термодинамики. Внутренняя энергия. Изобарный и изохорный тепловые процессы. Энтальпия.
1)Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.
2)Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы.
3)Изобарный процесс — термодинамический процесс, происходящий в системе при постоянном давлении и постоянной массе идеального газа.
Изохорический или изохорный процесс — термодинамический процесс, который происходит при постоянном объёме.
4)энтальпия — это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении. H= E+pV
№3
Закон Гесса и его следствия. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов. Термохимические уравнения.
Закон Гесса — основной закон термохимии, который формулируется следующим образом:
количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы).
Закон открыт русским химиком Г. И. Гессом в 1840 г.; он является частным случаем первого начала термодинамики применительно к химическим реакциям. Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него:
Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье — Лапласа).
Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты (ν):
Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):
Таким образом, пользуясь табличными значениями теплот образования или сгорания веществ, можно рассчитать теплоту реакции, не прибегая к эксперименту Для расчёта теплоты процесса, протекающего при иных условиях, необходимо использовать и другие законы термохимии, например, закон Кирхгофа, описывающий зависимость теплового эффекта реакции от температуры.
Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.
Термохимические рассчеты.
Основной принцип на котором основываются все термохимические рассчеты установлены химиком Гессом. Этот принцип известен под названием закон гесса и являющийся частным случаем закона сохранения энергии.
Термохимические уравнения
Термохимические уравнения реакций - это уравнения, в которых около символов химических соединений указываются агрегатные состояния этих соединений или кристаллографическая модификация и в правой части уравнения указываются численные значения тепловых эффектов
Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.
В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции (ΔН) записывать отдельно, через запятую.
№4 Обратимые и необратимые в термодинамическом смысле процессы. Процессы жизнедеятельности как пример необратимых процессов.
Обратимые и необратимые процессы, пути изменения состояния термодинамической системы. Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым.Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия, теплопроводность, вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия.
Примеры необратимых процессов: консервация тканей при низких температурах. Обратимые процессы являются предельным случаем реальных процессов, происходящих в природе и осуществляемых в промышленности или в лаборатории.
№5 Второе начало термодинамики. Энтропия. Стандартные энтропии. Критерий направления самопроизвольных процессов в изолированных системах.
Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.
Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.
Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.
2) Энтропия есть мера вероятности пребывания системы в данном состоянии или мера неупорядоченности систем. Важное значение понятия энтропии связано с тем, что на основе этой величины можно прогнозировать направление самопроизвольного протекания процессов.
№6 Энергия Гиббса. Термодинамичеческие условия равновесия.
Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; это термодинамический потенциал следующего вида :
G=U+ PV-TS
Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)
Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)
Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. . Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия. термодинамическое равновесие достигается, если скорость релаксационных процессов достаточно велика (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (этот случай имеет место в геологических процессах).
В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз
№7 Критерии направления самопроизвольных процессов в закрытых и открытых системах. Энтальпийный и энтропийный факторы в уравнении гиббса. Экзергонический и эндергонические реакции.
Реальные процессы проводятся, как правило, в закрытых системах в изобарно-изотермических (р,Т=соnst)
или изохорно-изотермических (V, Т= соnst) условиях. Критерием направленности самопроизвольного процесса в этих случаях является знак изменения энергии Гиббса dG .
Энергия Гиббса G = Н –ТS = U + рV –ТS.
Уравнения также можно представить в виде: Н = G +ТS; U = А + ТS. Где величина ТS характеризует связанную с частицами системы энергию , т.е. ту часть полной энергии системы, которая рассеивается в окружающей среде в виде теплоты (так называемая потерянная работа).
Судить о возможности самопроизвольного протекания процесса можно по знаку изменения функции свободной энергии: если Д ( 7 О, т.е. в процессе взаимодействия происходит уменьшение свободной энергии, то процесс термодинамически возможен. Если ДС 0, то протекание процесса невозможно. Таким образом, все процессы могут самопроизвольно протекать в сторону уменьшения свободной энергии. Эта формулировка справедлива как для изолированных, так и для открытых систем
Энтальпийный и энтропийный факторы. Процессы могут протекать самопроизвольно (ΔG<0), если они сопровождаются уменьшением энтальпии (ΔH<0) и увеличением энтропии системы (ΔS>0). Если же энтальпия системы увеличивается (ΔH>0), а энтропия уменьшается (ΔS<0), то такой процесс протекать не может (ΔG>0). При иных знаках ΔS и ΔН принципиальная возможность протекания процесса определяется соотношением энтальпийного (ΔH) и энтропийного (ТΔS) факторов.
Если ΔН>0 и ΔS>0, т.е. энтальпийная составляющая противодействует, а энтропийная благоприятствует протеканию процесса, то реакция может протекать самопроизвольно за счет энтропийной составляющей, при условии, что |ΔH|<|TΔS|.
Если, энтальпийная составляющая благоприятствует, а энтропийная противодействует протеканию процесса, то реакция может протекать самопроизвольно за счет энтальпийной составляющей, при условии, что |ΔH|>|TΔS|.
.Эндергонические и экзергонические реакции
Направление химической реакции определяется значением ΔG. Если эта величина отрицательна, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называют экзергоническими. Если при этом абсолютное значение ΔG велико, то реакция идёт практически до конца, и её можно рассматривать как необратимую.
Если ΔG положительно, то реакция будет протекать только при поступлении свободной энергии извне; такие реакции называют эндергоническими. Если абсолютное значение ΔG велико, то система устойчива, и реакция в таком случае практически не осуществляется
№8 Обратимые и необратимые по направлению реакции. Понятие о химическом равновесии. Константа химического равновесия. Закон действующих масс.
Реакцию называют обратимой, если её направление зависит от концентраций веществ — участников реакции. По завершении обратимой реакции, т. е. при достижении равновесия химического, система содержит как исходные вещества, так и продукты реакции. Реакцию называют необратимой, если она может происходить только в одном направлении и завершается полным превращением исходных веществ в продукты; пример — разложение взрывчатых веществ. Одна и та же реакция в зависимости от условий (от температуры, давления) может быть существенно обратима или практически необратима.
Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временемПоложение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1885 году французским ученым Ле-Шателье.
Факторы влияющие на химическое равновесие:
1) температура. При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении в сторону экзотермической (выделение) реакции.
2) давление . При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении в сторону большего объёма. Этот принцип действует только на газы, т.е. если в реакции участвуют твердые вещества, то они в расчет не берутся.
3) концентрация исходных веществ и продуктов реакции. При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при увеличении концентрации продуктов реакции-в сторону исходных веществ.Катализаторы не влияют на смещение химического равновесия!
Константа химического равновесия — характеристика химической реакции, по значению которой можно судить о направлении процесса при исходном соотношении концентраций реагирующих веществ, о максимально возможном выходе продукта реакции при тех или иных условиях.
Константа химического равновесия определяется по закону действующих масс. Ее значения находят расчетно или на основании экспериментальных данных. Константа химического равновесия зависит от природы реагентов и от температуры.
- Рассчеты
константы равновесия.
Зако́н де́йствующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ.
Закон действующих масс в кинетической форме (основное уравнение кинетики) гласит, что скорость элементарной химической реакции пропорциональна произведению концентраций реагентов в степенях, равных стехиометрическим коэффициентам в уравнении реакции
№9 Применяемость основных закономерностей термодинамики к живым организмам. Организмы как открытые системы. Теорема Пригожина
Термодинамика живых систем
Для обновления элементов в живых системах требуется постоянный приток извне веществ и энергии, а также вывод во внешнюю среду тепла и продуктов распада. Это означает, что живые системы обязательно должны быть открытыми системами. Благодаря этому в них создается и поддерживается химическое и физическое неравновесие. Именно на этом неравновесии основана работоспособность живой системы, направленная на поддержание высокой упорядоченности своей структуры, а, значит, на сохранение жизни и осуществление различных жизненных функций. Кроме того, живая система, благодаря свойству открытости, достигает стационарности, т.е. постоянства своего неравновесного состояния.
В изолированной системе (такая система не обменивается с внешней средой веществом и энергией), находящейся в неравновесном состоянии, происходят необратимые процессы, которые стремятся привести систему в равновесное состояние. Переход живой системы в такое состояние означает для нее смерть.
Таким образом, открытость – одно из важнейших свойств живых систем.
Весьма важным является вопрос о применимости законов термодинамики к живым системам.
Открытые системы, термодинамические системы, которые обмениваются с окружающей средой веществом (а также энергией и импульсом). К наиболее важному типу О. с. относятся химические системы, в которых непрерывно протекают химические реакции, происходит поступление реагирующих веществ извне, а продукты реакций отводятся. Биологические системы, живые организмы можно также рассматривать как открытые химические системы. Такой подход к живым организмам позволяет исследовать процессы их развития и жизнедеятельности на основе законов термодинамики неравновесных процессов, физической и химической кинетики.
Теорема Пригожина — теорема термодинамики неравновесных процессов. Согласно этой теореме, стационарному состоянию системы (в условиях, препятствующих достижению равновесного состояния) соответствует минимальное производство энтропии. Если таких препятствий нет, то производство энтропии достигает своего абсолютного минимума — нуля.
Формулировка теоремы: В стационарном состоянии продукция энтропии внутри термодинамической системы при неизменных внешних параметрах является минимальной и константной. Если система не находится в стационарном состоянии, то она будет изменяться до тех пор, пока скорость продукции энтропии, или, иначе, диссипативная функция системы не примет наименьшего значения.
№10. Определение теплового эффекта реакции нейтрализации. Сущность метода и расчетные формулы. Значение термохимии для биологии и медицины.
Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.
Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:
Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).
В системе не совершается никакой работы, кроме возможной при P = const работы расширения.
Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔHrO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.
Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях
Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):
ΔHреакцииO = ΣΔHfO (продукты) — ΣΔHfO (реагенты)
№11. Современные представления о строении атома. Характеристика энергетического состояния электрона системой квантовых чисел.
Характеристика электрона четырьмя квантовыми числами.
Основная характеристика, определяющая движение электрона в поле ядра,— это его энергия. Энергия электрона, как и энергия частицы светового потока — фотона, принимает не любые, а лишь определенные дискретные, прерывные значения.
Движущийся электрон обладает тремя степенями свободы перемещения в пространстве (соответственно трем координатным осям) и одной дополнительной степенью свободы, обусловленной наличием у электрона собственного механического и магнитного моментов, которые учитывают вращение электрона вокруг своей оси. Следовательно, для полной энергетической характеристики состояния электрона в атоме необходимо и достаточно иметь четыре параметра. Эти параметры получили название квантовых чисел. Квантовые числа, так же как и энергия электрона, могут приникать не все, а лишь определенные значения. Соседние значения квантовых чисел различаются на единицу.
Главное квантовое число n характеризует общий запас энергии электрона или его энергетический уровень. Главное квантовое число может принимать значения целых чисел от 1 до . Для электрона, находящегося в поле ядра главное квантовое число может принимать значения от 1 до 7 (соответственно номеру периода в периодической системе, в котором находится элемент). Энергетические уровни обозначаются или цифрами в соответствии со значениями главного квантового числа, или буквами:
Если, например, n=4, то электрон, находится на четвертом, считая от ядра атома, энергетическом уровне, или на N уровне.
Орбитальное квантовое числа l, которое иногда называют побочным квантовым числом, характеризует различное энергетическое состояние электрона данного уровня. Тонкая структура спектральных линий говорит о том, что электроны каждого энергетического уровня группируются в подуровни. Орбитальное квантовое число связано с моментом количества движения электрона при его движении относительно ядра атома. Орбитальное квантовое число определяет также форму электронного облака Квантовое число l может принимать все целочисленные значения от 0 до (п-1). Например, при n=4, l=0, 1, 2, 3. Каждому значению l соответствует определенный подуровень. Для подуровней применяются буквенные обозначения. Так, при l=0, 1, 2, 3 электроны находятся соответственно на s-, p-, d-, f- подуровнях. Электроны различных подуровней соответственно называют s-, p-, d-, f - электронами. Возможное число подуровней для каждого энергетического уровня равно номеру этого уровня, но не превышает четырех. Первый энергетический уровень (п=1) состоит из одного s-подуровня, второй (п=2), третий (п=3) и четвертый (п=4) энергетические уровни состоят соответственно из двух (s, p), трех (s, p, d) и четырех (s, p, d, f) подуровней. Больше четырех подуровней не может быть, так как значения l=0, 1, 2, 3 описываю электроны атомов всех 104 известных сейчас элементов.
Если l=0 (s-электроны), то момент количества движения электрона относительно ядра атома равен нулю. Это может быть только когда электрон поступательно движется не вокруг ядра, а от ядра к периферии и обратно. Электронное облако s-электрона имеет форму шара.
Магнитное квантовое число - c моментом количества движения электрона связан и его магнитный момент. Магнитное квантовое число характеризует магнитный момент электрона. магнитное квантовое число характеризует магнитный момент электрона и указывает на ориентацию электронного облака относительного избранного направления или относительно направления магнитного поля. Магнитное квантовое число может принимать любые целые положительные и отрицательные значения, включая и ноль в пределах от – l до + l. Число значений магнитного квантового числа , которое равно 2 l+1, - это число энергетических состояний, в которых могут находиться электроны данного подуровня. Таким образом, s-электроны имеют лишь одно состояние , p-электроны – 3 состояния , d-, f-электроны – соответственно 5 и 7 состояний. Энергетические состояния принято обозначать схематически энергетическими ячейками, изображая их в виде прямоугольников, а электроны в виде стрелок в этих ячейках.
Спиновое квантовое число - характеризует внутреннее движение электрона — спин. Оно связано с собственным магнитным моментом электрона, обусловленным его движением вокруг своей оси. Это квантовое число может принимать только два значения: + 1/2 и —1/2, в зависимости от того, параллельно или антипараллельно магнитному полю, обусловленному движением электрона вокруг ядра, ориентируется магнитное поле спина электрона.
Два электрона (пара) с одинаковыми значениями квантовых чисел: n, I, , но с противоположно направленными спинами (↑ ↓) называются спаренными или неподеленной парой электронов. Электроны с ненасыщенными спинами (↑↑) называются неспаренными.
№12 Основные принципы заполнения электронных оболочек атомов на примере атома железа
Спросить
№13 Основное и возбужденное состояние атома на примере атомов бериллия, углерода и серы.
спросить
№14 Основное и возбужденное состояние атома на примере атомов железа, марганца, хрома.
Смотреть
№15 Периодический закон и периодическая система Д.И. Менделеева в системе квантовой теории строения атома. Современная формулировка периодического закона
Периодический закон Менделеева фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д. И. Менделеевым в 1869 при сопоставлении свойств всех известных в то время элементов и величин их атомных весов. Физический смысл П. з. был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного химического элемента к соседнему (в периодической системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодической системе, то есть числу протонов в ядре, в свою очередь равному числу электронов соответствующего нейтрального атома (см. Атом). Химические свойства атомов определяются структурой их внешних электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе П. з. лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Наглядная иллюстрация П. з.- кривые периодические изменения некоторых физических величин (ионизационных потенциалов, атомных радиусов, атомных объёмов) в зависимости от Z (см. Атомная физика).Какого-либо общего математического выражения П. з. не существует. П. з. имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов.
2.Современная формулировка периодического закона.
Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.
№16 Структура переодической системы элементов Менднлеева s,p,d,f блоки элементов
Периодическая система химических элементов - естественная классификация химических элементов, являющаяся табличным выражением периодического закона Д.И. Менделеева. Главный принцип построения Периодической системы - выделение в ней периодов (горизонтальных рядов) и групп (вертикальных столбцов) элементов. Современная Периодическая система состоит из 7 периодов (седьмой период должен закончиться 118-м элементом). Короткопериодный вариант Периодической системы содержит 8 групп элементов, каждая из которых условно подразделяется на группу А (главную) и группу Б (побочную). В длиннопериодном варианте Периодической системы - 18 групп, имеющих те же обозначения, что и в короткопериодном. Элементы одной группы имеют одинаковое строение внешних электронных оболочек атомов и проявляют определенное химическое сходство. Номер группы в Периодической системе определяет число валентных электронов а атомах элементов. При этом в группах, обозначенных буквой А, содержатся элементы, в которых идет заселение s- и р-подуровней - s-элементы (IA- и IIA-группы) и р-элементы (IIIA-VIIIA-группы), а в группах, обозначенной буквой Б, находятся элементы, в которых заселяются d-подуровни - d-элементы. Поскольку в каждом большом периоде должно находиться по 10 d-элементов (у которых заполняются пять d-орбиталей), то Периодическая система должна содержать 10 соответствующих групп. . Для f-элементов номеров групп не предусмотрено. Обычно их условно помещают в ячейки Периодической системы, отвечающие лантану (лантаноиды) и актинию (актиноиды). Символы лантаноидов и актиноидов выносятся за пределы Периодической системы в виде отдельных рядов. Номер периода в Периодической системе соответствует числу энергетических уровней атома данного элемента, заполненных электронами. Номер периода = Число энергетических уровней, заполненных электронами = Обозначение последнего энергетического уровня Порядок формирования периодов связан с постепенным заселением энергетических подуровней электронами. Последовательность заселения определяется принципом минимума энергии, принципом Паули и правилом Гунда. Периодическое изменение свойств элементов в периоде объясняется последовательностью заполнения электронами уровней и подуровней в атомах при увеличении порядкового номера элемента и заряда ядра атома. Каждому элементу (кроме f-элементов) в Периодической системе соответствуют вполне определенные координаты: номер периода и номер группы. По этим координатам можно не только найти элемент в таблице Д.И. Менделеева, но и построить его электронную конфигурацию, учитывая физический смысл значения чисел, соответствующих номерам периода и группы, а также наличие буквы в номере группы, определяющей принадлежность элемента к секциям s- и p-элементов или d-элементов.
№17 Переодические свойства элементов, их изменение в группах и периодах.
свойства элементов показывают тенденции. Эти тенденции могут быть предсказаны, используя периодическую таблицу и могут быть объяснены и поняты, анализируя электронные конфигурации элементов. Элементы имеют тенденцию получать или терять валентные электроны, чтобы достигнуть устойчивого формирования октета. Устойчивые октеты замечены в инертных газах, или инертных газах, Группы VIII из периодической таблицы. В дополнение к этой деятельности есть две других важных тенденции. Во-первых, электроны добавлены, по одному перемещаясь от слева направо через период. Поскольку это случается, электроны наиболее удаленного снаряда испытывают все более и более прочное ядерное притяжение, таким образом электроны становятся ближе к ядру и более прочносвязанный к этому. Во-вторых, спуская колонку в периодической таблице, наиболее удаленные электроны становятся менее прочносвязанными к ядру. Это случается, потому что число наполненных основных энергетических уровней (которые экранируют наиболее удаленные электроны от притяжения до ядра) увеличивается вниз в пределах каждой группы. Эти тенденции объясняют периодичность, наблюдаемую в элементных свойствах атомного радиуса, энергии ионизации, сродства к электрону, и электроотрицательности.
, атомный радиус элемента - половина интервала между центрами двух атомов того элемента, которые только касаются друг друга. Вообще, атомный радиус уменьшается через период со слева направо и увеличения вниз данная группа. Атомы с наибольшими атомными радиусами расположены в Группе I и у основания групп.
Перемещающийся от слева направо через период, электроны добавлены по одному к внешнему снаряду энергии. Электроны в пределах снаряда не могут экранировать друг друга от притяжения до протонов. Так как число протонов также увеличивается, увеличения эффективного ядерного заряда через период. Это заставляет атомный радиус уменьшаться.
энергия ионизации, или ионизационный потенциал, является энергией, требуемой полностью удалить электрон из газообразного атома или иона. Чем ближе и более прочносвязанный электрон к ядру, тем более трудный это должно будет удалить, и выше его энергия ионизации будет. Первая энергия ионизации - энергия, требуемая удалить один электрон из материнского атома. Вторая энергия ионизации - энергия, требуемая удалить второй валентный электрон из одновалентного иона, чтобы формировать двухвалентный ион, и так далее. Последовательное увеличение энергий ионизации. Вторая энергия ионизации всегда больше чем первая энергия ионизации. Увеличение энергий ионизации, перемещающееся от слева направо через период (уменьшающий атомный радиус). Уменьшения энергии ионизации, спускающие группу (увеличивающий атомный радиус). Группа у I элементов есть низкие энергии ионизации, потому что потеря электрона формирует устойчивый октет.
Сродства к электрону отражает способность атома принять электрон. Это - изменение энергии, которое происходит, когда электрон добавлен к газообразному атому. У атомов с более сильным эффективным ядерным зарядом есть большее сродство к электрону. Некоторые обобщения могут быть сделаны о сродстве к электрону определенных групп в периодической таблице. У Группы элементы IIA, щелочные земли, есть низкие значения сродства к электрону. Эти элементы относительно устойчивы, потому что они заполнились s подснаряды. У элементов VIIA Группы, галогенов, есть высокое сродство к электрону, потому что дополнение электрона к атому приводит к полностью наполненному снаряду. Группа у VIII элементов, инертных газов, есть сродство к электрону около нуля, начиная с каждого атома, обладает устойчивым октетом и не будет принимать электрон с готовностью. У элементов других групп есть низкое сродство к электрону.
Электроотрицательностей является мерой притяжения атома для электронов в химической связи. Чем выше электроотрицательность атома, тем больше его притяжение для электронов связи. Электроотрицательность связана с энергией ионизации. У электронов с низкими энергиями ионизации есть низкие электроотрицательности, потому что их ядра не проявляют прочную силу притяжения на электронах. У элементов с высокими энергиями ионизации есть высокие электроотрицательности из-за прочного напряжения, проявленного на электронах ядром. В группе электроотрицательность уменьшается как увеличения атомного номера, в результате увеличенного интервала между валентным электроном и ядром (больший атомный радиус). Пример электроположительного (то есть, низкая электроотрицательность) элемент - цезий; пример очень электроотрицательного элемента - фтор.
№18Комплексные соединения. Координационная теория Вернера. Спектрохимический ряд лигандов
1.Комплексные соединения - наиболее обширный и разнообразный класс соединений. В живых организмах присутствуют комплексные соединения биогенных металлов с белками, аминокислотами, порфиринами, нуклеиновыми кислотами, углеводами, макроциклическими соединениями. Важнейшие процессы жизнедеятельности протекают с участием комплексных соединений. Некоторые из них (гемоглобин, хлорофилл, гемоцианин, витамин В12 и др.) играют значительную роль в биохимических процессах. Многие лекарственные препараты содержат комплексы металлов. Например, инсулин (комплекс цинка), витамин В12 (комплекс кобальта), платинол (комплекс платины) и т.д.
2 Координационная теория Вернера Теория координационных соединений, предложенная А. Вернером в 1893 году, до сих пор является основной теорией координационных соединений (для комплексов определенного вида). Рассмотрим ее основные положения.
1. Большинство элементов проявляет два типа валентности – главную и побочную.
2. Атом элемента стремится насытить не только главные, но и побочные валентности
3. Побочные валентности атома строго фиксированы в пространстве и определяют геометрию комплекса и его различные свойства.
В современной химии синонимом главной валентности является степень окисления элемента (обозначим ее сплошной линией), а побочная валентность определяется как координационное число, то есть количество атомов непосредственно связанных с металлом при насыщении его побочной валентности (обозначим ее пунктирной линией).
Лиганды слабого поля Лиганды средней силы Лиганды сильного поля
I–, Br–, Cl–, OH–, F– H2O, NCS–, CH3COO–, NH3 NO2, СО, CN
Спектрохимический ряд лигандов
№19 Класификация и нуменклатура комплексных соединений
НОМЕНКЛАТУРА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ
В зависимости от заряда комплекса КС подразделяют на:
катионные - [Cu(NH3)4]Cl2, [Cr(H2O)6]Cl3;
анионные - K2[Fe(CN)6], H[AuCl4], H2[SiF6];
катионно-анионные - [Pt(NH3)4][PbCl4] и
нейтральные комплексы (неэлектролиты) - [Co(NH3)4(NO3)2], [Pt(NH3)4Br3].
Названия КС с внешней сферой состоят из двух слов (в общем виде “анион катиона”). При этом обязательно указывают в скобках римской цифрой после названия центрального иона его степень окисления. Названия комплексных соединений без внешней сферы состоят из одного слова.
В названиях катионных и нейтральных комплексов комплексообразователи имеют русские наименования соответствующих им элементов. В анионных комплексах используют корни латинских наименований элементов. При этом число одинаковых лигандов указывают греческими числительными: моно-, ди-, три-, тетра-, пента-, гекса- и т.д. Названия отрицательно заряженных лигандов всегда оканчивают на букву “о”:
. КЛАССИФИКАЦИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ. ОСНОВНЫЕ СПОСОБЫ ИХ ПОЛУЧЕНИЯ
Значительное разнообразие КС затрудняет их классификацию. Наиболее распространена классификация по типу лигандов.
1. Аквакомплексы в качестве лигандов содержат молекулы воды - H2O. Образуются они при взаимодействии безводных веществ с водой (в частности, при растворении в воде),
2. Гидроксокомплексы в качестве лигандов содержат гидроксид-ионы - OH-. Образуются при взаимодействии металлов, оксиды и гидроксиды которых амфотерны, а также указанных оксидов и гидроксидов с избытком раствора щелочи,
Кроме того, гидроксокомплексы получают обменной реакцией взаимодействия солей металлов, гидроксиды которых амфотерны, с избытком раствора щелочи, например:
3. Амминокомплексы (аммиакаты, аммины) в качестве лигандов содержат молекулы аммиака - NH3. Образуются амминокомплексы как в водном растворе гидрата аммиака (при его избытке):
так и при действии на вещества (или при пропускании через раствор вещества) газообразного или жидкого аммиака
4. Ацидокомплексы в качестве лигандов содержат анионы (кислотные остатки), их получают взаимодействием, чаще всего, двух солей:
а также взаимодействием металлов, оксидов с солями, кислотами, смесями кислот (царская водка и др.):
5. Карбонилкомплексы (карбонилы) в качестве лигандов содержат молекулы монооксида углерода - CO. Карбонилкомплексы получают взаимодействием d- металлов в порошкообразном состоянии с газообразным CO при повышенном давлении и обычных температурах или небольшом (200-300 °С) нагревании,
№20 Хелатные комплексные соединения, природа их лигандов. Природные и внутрикомплексные соединения (гемоглабин крови, хролофилл, витамин В12)
Циклические или хелатные(клешневидные) комплексные соединения. Они содержат би- или полидентатный лиганд,который как бы захватывает центральный атом подобно клешням рака Ме-атом металла, стрелками показана донорно-акцепторная связь. Примерами таких комплексов служат оксалатный комплекс железа(III) [Fe(C2O 4) 3 ]3- и этилендиаминовый комплекс платины(IV) [PtEn3]4+ . К группе хелатов относятся и внутрикомплексные соединения,в которых центральный атом входит в состав цикла, образуя ковалентные связи с лигандами разными способами- донорно-акцепторным и за счет неспаренных атомных электронов. Комплексы такого рода весьма характерны для аминокарбоновых к-т. Простейший их представитель-аминоуксусная к-та(глицин) NH2CH2COOH – образует хелаты с ионами Сu2+, Pt2+, Rh3\
Хелатные соединения отличаются особой прочностью,т.к центральный центральный атом в них блокирован циклическими лигандами. Их применяют для умягчения воды, т.к при их добавлении растворяются даже сульфаты кальция и бария,оксалаты и карбонаты кальция. хелатные соединения в природе- Гемоглобин состоит из комплекса-гема,связанного с белком-глобином. В геме центральным ионом явл-ся ион Fe2+ ,вокруг которого координированы четыре атома азота,принадлежащие к сложному лиганду с циклическими группировками. Гемоглобин обратимо присоединяет кислород и доставляет из легких к тканям. Хлорофилл-построен аналогично как и гемоглобин,но в кач-ве центрального иона содержит Mg2+,учавствует в фотосинтезе
№21Природа химической связи в комплексных соединениях
Во
внутренней сфере между комплексообразователем
и лигандами существуют ковалентные
связи, образованные в том числе и по
донорно-акцепторному механизму. Для
образования таких связей необходимо
наличие свободных орбиталей у одних
частиц (имеются у комплексообразователя)
и неподеленных электронных пар у других
частиц (лиганды). Роль донора (поставщика
электронов) играет лиганд, а акцептором,
принимающим электроны, является
комплексообразователь. Донорно-акцепторная
связь возникает как результат перекрывания
свободных валентных орбиталей
комплексообразователя с заполненными
орбиталями донора.Между внешней и
внутренней сферой существует ионная
связь. Приведем пример.Электронное
строение атома бериллия:
Электронное
строение атома бериллия в возбужденном
состоянии:
Электронное
строение атома бериллия в комплексном
ионе [BeF4]2–:
В данном случае атом Be является акцептором,
а ионы фтора – донорами, их свободные
электронные пары заполняют гибридизованные
орбитали (sp3-гибридизация).
Магнитные свойства Среди химических соединений, в том числе комплексных, различают парамагнитные и диамагнитные, по разному взаимодействующие с внешним магнитным полем.Парамагнитные комплексы обладают моментом µ и поэтому при взаимодействии с внешним магнитным полем втягиваются в него. Напротив, диамагнитные комплексы, не имея собственного магнитного момента, выталкиваются из внешнего магнитного поля. Парамагнитные свойства веществ обусловлены наличием в их структуре неспаренных электронов и в случае комплексов объясняются специфическим заполнением электронами энергетических уровней.