
- •11) Тепловое равновесие (или термодинамическое равновесие) – это такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными.
- •Основные свойства аморфных тел
- •19) Сопротивление r однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины и сечения следующим образом:
- •Зависимость сопротивления от температуры
- •25) Электрический ток в газах
- •33)Мощность переменного тока.
- •Использование электроэнергии.
- •Трансформаторы.
- •Альтернативные источники энергии.
- •Физические свойства фотона
- •50) Открытие радиоактивности
- •Деление ядер урана
- •Биологическое действие радиоактивных излучений
- •54) Элементарные частицы
- •Превращение элементарных частиц
- •55) Значение физики для объяснения мира и развития производительных сил общества
Использование электроэнергии.
В наше время на электроэнергии работают большая часть предметов и приборов, которые люди используют как при работе, так и в быту. Свет в тёмное время суток мы получаем с помощью электроэнергии. Раньше, когда ещё не была открыта электроэнергия, книги, документы и т.д. оформлялись в ручную и это занимало большое количество времени. Сейчас же используются печатные машинки и компьютеры, которые работают на электроэнергии. Они позволяют в 8-10 раз увеличить скорость написания книги, документа и т.д., по сравнению с написанием вручную.
Сейчас основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность.
Трансформаторы.
Трансформатор – это аппарат, предназначенный для повышения и понижения переменного напряжения при изменении частоты тока. Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в железном сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке.
Альтернативные источники энергии.
Энергия солнца.
Простейший коллектор солнечного излучения представляет собой зачерненный
металлический (как правило, алюминиевый) лист, внутри которого
располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет
солнечной энергии, поглощенной коллектором, жидкость поступает для
непосредственного использования.
Ветровая энергия.
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем
в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и
повсюду на земле дуют ветры.
Энергия Земли.
Издавна люди знают о стихийных проявлениях гигантской энергии,
таящейся в недрах земного шара. Память человечества хранит предания о
катастрофических извержениях вулканов, унесших миллионы человеческих
жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность
извержения даже сравнительно небольшого вулкана колоссальна, она
многократно превышает мощность самых крупных энергетических установок,
созданных руками человека. Правда, о непосредственном использовании
энергии вулканических извержений говорить не приходится, нет пока у людей
возможностей обуздать эту непокорную стихию.
35) Электромагнитные волны, гипотеза Максвелла. Волновые явления. Экспериментальное обнаружение электромагнитных волн. Изобретение радио Поповым А. С. Принцип радиосвязи( модуляция и детектирование). Свойства электромагнитных волн. Радиолокация. Распространение радиоволн.
Ответ:
Электромагнитные волны.
Распространяющиеся в пространстве возмущения электромагнитного поля называются ЭЛЕКТРОМАГНЫТНЫМИ ВОЛНАМИ.
Гипотеза Максвелла.
Подтоком смещения следует понимать изменяющееся электрическое поле. Именно оно, согласно гипотезе Максвелла, является вторым источником магнитного поля.
Явление порождения магнитного поля переменным электрическим полем называется магнитоэлектрической индукцией.
Волновое явление.
Под волновыми явлениями наука понимает механические колебания и всякого рода излучения (микроволны, радиоволны, свет и пр.)
Экспериментальное обнаружение электромагнитных волн.
Герц получал
электромагнитные волны, возбуждая в
вибраторе с помощью источника высокого
напряжения серию импульсов быстропеременного
тока. Колебания электрических зарядов
в вибраторе создают электромагнитную
волну. Только колебания в вибраторе
совершает не одна заряженная частица,
а огромное число электронов, движущихся
согласованно. В электромагнитной
волне векторы
и
перпендикулярны
друг другу. В данном случае вектор
лежит
в плоскости, проходящей через вибратор,
а вектор
перпендикулярен
этой плоскости. Излучение волн происходит
с максимальной интенсивностью в
направлении, перпендикулярном оси
вибратора. Вдоль этой оси излучения не
происходит.
Электромагнитные волны регистрировались Герцем с помощью приемного вибратора (резонатора), представляющего собой такое же устройство, как и излучающий вибратор.
Изобретение радио Поповым А.С.
Первый радиоприёмник, реагирующий звонком на радиоволны, излучаемые грозовыми разрядами, был продемонстрирован 7 мая 1895 года русским учёным А. С. Поповым. В этом же году им был создан первый радиопередатчик. Для записи принимаемых от него сигналов на телеграфную ленту Попов включил в цепь звонка своего приемника телеграфный аппарат Морзе. 24 марта 1896 года Попов продемонстрировал первую в мире радиопередачу и приём телеграфного текста. Расстояние передачи было 250 м
Принцип радиосвязи( модуляция и детектирование).
Радиосвязью называют приём и передачу информации с помощью радиоволн с частотой примерно от 10^5 до 10^9 Гц.
Изменение амплитуды высокочастотных колебаний с частотой, равно частоте звукового сигнала, называется амплитудной модуляцией.
Детектирование ( или демодуляция ) – это процесс преобразования модулированных колебаний высокой частоты в низкочастотные колебания.
Радиолокация
Радиолокация - обнаружение и определение местоположения различных объектов с помощью радиотехнических устройств.
Попадая на границу раздела двух сред, часть электромагнитных волн отражается, а часть проходит во вторую среду, преломляясь.
Распространение радиоволн
Распространение радиоволн, явление переноса энергии электромагнитных колебаний в диапазоне радиочастот .
36) Развитие взглядов на природу света. Скорость света. Законы геометрической оптики ( закон отражения, преломления, полного отражения).
Ответ:
Развитие взглядов на природу света.
Два способа передачи воздействий. От источника света, например лампочки, свет распространяется во все стороны и падает на окружающие предметы, вызывая, в частности, их нагревание. Попадая в глаз, свет вызывает зрительное ощущение — мы видим. Можно сказать, что при распространении света происходит передача воздействий от одного тела (источника) к другому (приемнику). Вообще же действие одного тела на другое может осуществляться двумя различными способами: либо по средством переноса вещества от источника к приемнику, либо же по средством изменения состояния среды между телами (без переноса вещества).
Скорость света.
Скорость света в вакууме определяется в точности 299792458 м/с (около 300 000 км в секунду)
Ско́рость све́та в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме. В физике традиционно обозначается латинской буквой «c» (произносится как [це]). Скорость света в вакууме —фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта.
Законы геометрической оптики ( закон отражения, преломления, полного отражения).
А1) Падающий луч, отраженный луч и перпендикуляр, восстановленный в точке падения лежат в одной плоскости.
А2) Угол отражения равен углу падения.
А1 и А2 – составляют содержание закона отражения света.
Б1) Падающий луч, преломленный луч и перпендикуляр к границе раздела 2-х сред в точке падения луча лежат в одной плоскости.
Б2) Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред, равная отношению скоростей света в этих средах:
Sina=v1
Sinb v2
Б1 иБ2 – составляют содержание закона преломления света.
При
>
o преломление
света невозможно. Значит, луч должен
полностью отразиться. Это явление и
называется полным отражением света.
Угол падения 0., соответствующий углу преломления 90°, называют предельным углом полного отражения.
37) 1 Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты).
2 Цвета тел:
у красного цвета максимальная скорость в среде и минимальная степень преломления
у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.
Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.
3 Спектр - распределение значений физической величины (обычно энергии, частоты или массы).
4 Виды спктров:
По характеру распределения значений физической величины спектры могут быть дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.
5 Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.
В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.
38) 1 Интерференция волн — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве. Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.
2 Интерференция света — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.
3 Применение интерференции света
Тот факт, что расположение интерференционных полос зависит от длины волны и разности хода лучей, позволяет по виду интерференционной картины (или их смещению) проводить точные измерения расстояний при известной длине волны или, наоборот, определять спектр интерферирующих волн (интерференционная спектроскопия).
применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).
Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий.
39) Дифракция Волн - явление огибания волнами препятствий и проникновение их в область геометрической тени. Явление дифракции можно качественно объяснить применением принципа Гюйгенса к распространению волн в среде при наличии преград.
Дифракцией света называется огибание световыми волнами границы непрозрачных тел и проникновение света в область геометрической тени. Дифракционная решетка представляет собой совокупность большого числа регулярно расположенных штрихов( щелей, выступов) нанесенных на некоторую поверхность.Существуют отражательные и прозрачные дифракционные решетки. Дифракционная решетка применяется для разбития фронта световой волны, падающей на дифракционную решетку, на отдельные когерентные пучки.
40)
Поперечность световых волн: Электромагнитные волны - это поперечные волны. Если свет - это тоже электромагнитные волны, то и они, следовательно, должны быть поперечными. Какие оптические явления подтверждают это? Если пропустить свет через кристалл шпата, то после вторичного прохождения света через такой же кристалл, при определенной ориентации светового луча и кристалла, луч практически полностью исчезает. Отсюда можно заключить, что в результате действия на свет первого кристалла вышедшая из него световая волна оказывается не такой, какой она была до этого. Это объясняется следующим образом. Некоторые кристаллы (особенно турмалин) обладают свойством пропускать только такие световые волны, в которых вектор напряженности Е имеет составляющую, параллельную определенному направлению в кристаллической решетке кристалла, называемому его осью. Естественный свет, создаваемый Солнцем или какими-либо обычными источниками, например лампами, представляет собой совокупность световых волн, излучаемых огромным количеством различных атомов. В таком свете колебания вектора Е происходят по всем направлениям, перпендикулярным направлению распространения света. Если пучок такого света направить на кристалл турмалина, то через него будет пропущена лишь та часть падающего света, в которой электрический вектор ориентирован параллельно оси кристалла. В результате прохождения через кристалл турмалина свет из естественного превращается в линейно-поляризованный. Поляризация света: Процесс ориентации колебаний вектора Е световой волны в определенном направлении называется поляризацией света. 41) Геометрическая оптика: Геометрической оптикой называется раздел оптики, в котором свет рассматривается без учета его природы как совокупность отдельных и независимых друг от друга световых лучей. Линзы: Линза - это деталь из оптически прозрачного однородного материала (обычно стекло), ограниченная двумя полированными преломляющими поверхностями вращения, например, сферическими или плоской и сферической. Фокус: Лучи, падающие на линзу параллельно ее главной оптической оси, после преломления в линзе либо сами (если линза собирающая), либо своими продолжениями в обратную сторону (если линза рассеивающая) проходят через точку, лежащую на этой оси и называемую главным фокусом линзы. Оптическая сила: Величина, обратная фокусному расстоянию линзы, называется ее оптической силой (D). D=1/F Диоптрия: Диоптрия (1 дп)- это единица измерения оптической силы линзы, т.е. оптическая сила линзы с фокусным расстоянием 1 м. Виды линз: Различают выпуклые (собирающие) линзы (у которых середина толще, чем края) и вогнутые (рассеивающие) линзы (у которых середина тоньше, чем края). |
|
|
|
|
|
42) Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·1014 — 3·1016 Герц). Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).
Открытие инфрокрасных лучей.- Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.
Применение инфракр. Лучей- Инфракрасные лучи применяются в физиотерапии.в медецине.
Рентгеновские лучи проходят через непрозрачные тела и предметы, такие как, например, бумага, материя, дерево, ткани человеческого и животного организма и даже через определенной толщины металлы. Причем, чем короче длина волны излучения, тем легче они проходят через перечисленные тела и предметы.
Рентге́новская тру́бка — электровакуумный прибор, предназначенный для генерации рентгеновского излучения.
Шкала электромагнитного излучения. По горизонтальной оси отложены: внизу – длина волны в метрах, вверху – частота колебаний в герцах
1) электромагнитные
колебания низкой частоты
м
2) радиоволны
м
м
3) инфракрасное
излучение
м
м
4) видимый
свет
м
м
5) ультрафиолетовое
излучение
м
м
6) рентгеновское
излучение
м
м
7)
-излучение
м
43) Гипотеза Планка — гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию Е , пропорциональной частоте ν излучения:
E=hv=hw
где h или h=h/2 π — коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением — формулу Планка.
Тепловое излучение или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.
Примером теплового излучения является свет от лампы накаливания.
Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.
Квантовая теория поля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния.
Именно на квантовой теории поля базируется вся физика элементарных частиц.
При построении квантовой теории поля ключевым моментом было понимание сущности явления перенормировки.
Фотон(от греч «свет»)— элементарная частица, переносчик электромагнитного взаимодействия, квант электромагнитного поля. Фотоны обозначаются буквой γ, поэтому их часто называют гамма-квантами (особенно фотоны высоких энергий); эти термины практически синонимичны.