Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_fizike_2.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
657.92 Кб
Скачать

Зависимость сопротивления от температуры

Изменение температуры вызывает изменение сопротивления проводников (большинство металлических проводников при увеличении температуры свое сопротивление увеличивают, а вода, угольные нити ламп, растворы и т.п. – уменьшают). 

Изменение сопротивления проводника от температуры, приходящееся на каждый ом сопротивления данного проводника при изменении температуры его на 1° С, называют температурным коэффициентом. 

Таким образом, температурный коэффициент характеризует чувствительность изменений сопротивления проводника к изменениям температуры. 

22) Электрическая проводимость различных веществ. Электрический ток в полкпроводниках. Полупроводники и их применение.

Электри́ческая проводи́мость — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводимостью металлов и диэлектриков.

Применяются в:

Терморезисторах, фоторезисторах, полупроводниковом диоде, полупроводниковом триоде (транзисторе).

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

23) Электронная проводимость а металлах.

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Проводимость металлов обусловлена движением свободных электронов, образующих так называемый электронный газ в металле. По этой причине металлическую проводимость часто называют электронной проводимостью.

24) Электрический ток в жидкости. Закон электролиза.

Электрический ток в жидкостях обусловлен движением положительных и отрицательных ионов. В отличии от тока в проводниках где движутся электроны. Таким образом, если в жидкости нет ионов, то она является диэлектриком, например дистиллированная вода. Поскольку носителями заряда являются ионы, то есть молекулы и атомы вещества, то при прохождении через такую жидкость электрического тока неизбежно приведет к изменению химических свойств вещества.

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Основной закон электролиза:

Масса вещества, выделившегося на электроде за время Δt при прохождении через элетролит тока I, пропорциональна силе тока и времени, т. е. m=kiΔt

25) Электрический ток в газах

В обычных условиях газ - это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока. Газ-проводник - это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.

Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.

  • Несамостоятельный разряд — протекающий за счёт внешнего источника свободных носителей заряда.

  • Самостоятельный разряд — разряд который будет продолжать гореть и после отключения внешнего источника свободных носителей заряда.

Переход от несамостоятельного разряда к самостоятельному называется электрическим пробоем.

ТИПЫ САМОСТОЯТЕЛЬНЫХ РАЗРЯДОВ

  1. Тлеющий разряд возникает при низких давлениях.

  2. Искровой разряд возникает при больших напряженностях электрического поля (»3×106 В/м) в газе, находящемся под давлением порядка атмосферного.

  3. Дуговой разряд. Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непре­рывным — возникает дуговой разряд.

  4.  Коронный разряд — высоковольтный электрический разряд при высоком (напри­мер, атмосферном) давлении в резко неоднородном поле вблизи электродов с большой кривизной поверхности (например, острия).

-Типичным примером тлеющего разряда, знакомым большинству людей, является свечение неоновой лампы.

-газовые разряды используются всчётчиках Гейгера).

-Дуговой разряд для сварки и освещения.

-Искровой разряд для зажигания рабочей смеси в двигателях внутреннего сгорания.

-Коронный разряд для очистки газов от пыли и других загрязнений, для диагностики состояния конструкций.

Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») — частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). 

26)ЭЛЕКТРИЧЕСКИЙ ТОК В ВАКУУМЕ--электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность; - создать эл.ток в вакууме можно, если использовать источник заряженных частиц; - действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

Электронно-лучевая трубка (ЭЛТ или CRT)- это традиционная технология формирования изображения на «дне» герметично запечатанной стеклянной «бутылки». 

27) Вихревой характер магнитного поля

Линии магнитной индукции непрерывны: они не имеют ни начала, ни конца. Это имеет место для любого магнитного поля, вызванного какими угодно контурами с током. Векторные поля, обладающие непрерывными линиями, получили название вихревых полей. Мы видим, что магнитное поле есть вихревое поле.

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока.

Закон Ампера устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила, пропорциональная силе тока и индукции магнитного поля:

F = B I l sinα,

где α — угол между векторами магнитной индукции и тока, B — индукция магнитного поля, I — сила тока в проводнике, l — длина проводника.

Эта формула закона Ампера оказывается справедливой для прямолинейного проводника и однородного поля. Если проводник имеет произвольную формулу и поле неоднородно, то Закон Ампера принимает вид:

dF = I B dl sinα,

где dF — сила, с которой магнитное поле действует на бесконечно малый проводник с током I, dl — элемент длины проводника.

Размерность: [dF] = Н [I] = A, [B] = Н / (А · м), [l] = м.

Направление силы dF определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила правой руки. Сила dF максимальна, когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции (α = 90, sinα = 1)

Магнитные св-ва веществ-Магнитные поля создаются либо постоянными магнитами, либо токами.

У большинства веществ внутри атомов магнитные поля отдельных электронов, а также магнитные поля отдельных атомов и молекул полностью или почти полностью скомпенсированы. Поэтому их магнитные свойства  очень слабы они называются немагнитными.

28) Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 г. Он опытным путем установил, что при изменении магнитного поля внутри замкнутого контура в нем возникает электрический ток, который называют индукционным током. 

Индукционный ток всегда имеет такое направление, при котором его магнитное поле уменьшает (компенсирует) изменение магнитного потока, являющееся причиной возникновения этого тока.

Правило Ленца:Индукционный ток всегда имеет такое направление, что взаимодействие его с первичным магнитным полем противодействует тому движению, вследствие которого происходит индукция.

Магнитным потоком через замкнутый контур площадью S называют физическую величину, равную произведению модуля вектора магнитной индукции Б на площадь контура S и на косинус угла а между направлением вектора магнитной индукции и нормалью к площади контура. Ф = BS cos а(Ф-вебер)

изменения магнитного потока пропорциональны изменению площади S

Закон Эл-Маг. Индукции: Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения  магнитного потока, проходящего через этот контур:

Самоиндукция — явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока: .(Это так же и самоиндукция ЭДС)

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.В формуле ,где

 — магнитный поток  — ток в контуре,   — индуктивность.

29) Механическими колебаниями называют движения тел, которые точно (или приблизительно) повторяются через равные промежутки времени.

Свободные (собственные) колебания совершаются под действием внутренних сил колебательной системы, а вынужденные — под действием внешней переменной силы. 

Основные кинематические характеристики механического движения: траектория, путь, перемещение, скорость и ускорение.

30) Электромагнитные колебания — это колебания электрических и магнитных полей, которые сопровождаются периодическим изменением заряда, тока и напряжения. 

Свободные электромагнитные колебания - колебания в системе, которые возникают после выведения ее из положения равновесия. Вынужденные электромагнитные колебания - колебания в цепи под действием внешней периодической электродвижущей силы.

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Гармоническое колебание — колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону.

Амплитудой колебаний называют наибольшее смещение тела от положения равновесия хоили Хм. Это определяет величину, размер колебания. Периодом колебаний (Т)называют наименьший промежуток времени,через который движение.

31) Резистор, конденсатор и катушка индуктивности в цепи переменного тока

Резистор в цепи постоянного и переменного тока в любой момент времени обладает одним и тем же значением сопротивления R = U/I. Ток и напряжение совпадают по фазе. На векторной диаграмме направления этих векторов совпадают (рис.1).

Среднее значение мощности Pср.= Um*Im/2.

Конденсатор, включенный в цепь переменного тока, обладает емкостным сопротивлением Xc:

Xc = 1/(wC),

где С - емкость конденсатора,

w - частота переменного тока.

Величину емкостного сопротивления можно рассчитать по формуле Xc = U/I, предварительно измерив напряжение на конденсаторе U и силу тока в цепи I.

При этом колебания силы тока в цепи опережают по фазе колебания напряжения на конденсаторе на p/2. Если сила тока меняется по закону I = Imsin(wt), то напряжение - U = Umsin(wt - p/2).

В цепи, содержащей конденсатор, происходит периодический обмен энергией между генератором и конденсатором без необратимого преобразования электромагнитной энергии, т.е. среднее значение мощности переменного тока в данном случае равно нулю Pср. = 0.

Катушка индуктивности, включенная в цепь переменного тока обладает сопротивлением:

XL = wL,

где L - индуктивность катушки.

Величину индуктивного сопротивления можно рассчитать по формуле XL = U/I, предварительно измерив напряжение на катушке U и силу тока в цепи I.

Отметим, что значение XL больше, чем сопротивление катушки в цепи постоянного тока. Это связано с тем, что при протекании переменного тока через катушку индуктивности благодаря явлению самоиндукции в последней возникает индукционное электрическое поле, противодействующее полю, создаваемому генератором переменного напряжения. Это индукционное поле и является причиной индукционного сопротивления XL.

Связь индуктивности и явления самоиндукции можно проследить, исходя из следующего соотношения:

ec = - dФ/dt = - L*dI/dt, где ec - ЭДС самоиндукции.

L = ec, если скорость изменения тока самоиндукции равна dI/dt = 1 A/c.

В цепи, содержащей катушку индуктивности, колебания напряжения в цепи опережают по фазе колебания силы тока на p/2. Если напряжение меняется по закону U = Umsin(wt), то сила тока - I = Imsin(wt - p/2).

В цепи, содержащей катушку индуктивности, происходит периодический обмен энергией между генератором и катушкой без необратимого преобразования электромагнитной энергии, т.е. среднее значение мощности переменного тока в данном случае равно нулю Pср. = 0.

ЦЕПЬ ПЕРЕМЕННОГО ТОКА С АКТИВНЫМ, ИНДУКТИВНЫМ И ЕМКОСТНЫМ СОПРОТИВЛЕНИЯМИ

Цепь переменного тока, в которую включены последовательно активное сопротивление r, индуктивность L, обладающая индуктивным сопротивлением ХL, и емкость С, обладающая емкостным сопротивлением Хс.

Под действием переменного напряжения в этой цепи протекает переменный ток.

Выясним, чему равно общее напряжение на за­жимах цепи. Построим векторную диаграмму то­ка и напряжений для рас­сматриваемой цепи (рис. 57, б). Так как сопротив­ления соединены последовательно, то в них проте­кает одинаковый ток. Отложим по горизонтали, в выбранном масштабе вектор тока I. В цепи с активным сопротивлением ток и напряжение совпа­дают по фазе, поэтому вектор напряжения Uа от­кладываем по вектору тока.

Напряжение на индуктивности опережает ток на угол j = 90°. Поэтому век­тор UL откладываем вверх

под углом 90° к вектору тока.

В цепи с емкостью, наоборот, напряжение отстает от тока на угол j = 90°. Поэтому вектор Uc откладываем на диаграмме вниз под углом 90° к вектору тока.

Для определения общего напряжения, приложенного к зажимам цепи, сложим векторы UL и UС. Для этого отнимем от большего вектора UL вектор UС и получим вектор UL-UC, выражающий вектор­ную сумму этих двух напряжений. Теперь сложим векторы (UL-UC) и Ua. Суммой этих векторов будет диагональ параллелограмма – вектор U, изображающий общее напряжение на за­жимах цепи.

На основании теоремы Пифагора из треугольника напряжений АО Б следует, что

отсюда общее напряжение

Определим полное сопротивление цепи переменного тока, со­держащей активное, индуктивное и емкостное сопротивления. Для этого разделим стороны треугольника напряжений АОБ на число I выражающее силу тока в цепи, и получим подобный треугольник сопротивлений А'О'Б' . Его сторонами являются сопро­тивления r, (ХL — Хс) и полное сопротивление цепи Z.

Пользуясь теоремой Пифагора, можно написать, что

Отсюда полное сопротивление цепи

Силу тока в цепи с активным, индуктивным и емкостным сопро­тивлениями определяют по закону Ома:

На векторной диаграмме (рис. 57, б) видно, что в рассматри­ваемой цепи ток и напряжение генератора не совпадают по фазе. Из треугольника напряжений следует, что

Из треугольника сопротивлений

Резонанс в электрической цепи.

Резонанс в электрической цепи — явление резкого возраста­ния амплитуды вынужденных колебаний тока при приближении частоты внешнего напряжения (эдс) и собственной частоты колебательного кон­тура.

1 частота внешнего напряжения (ЭДС генератора) совпадает с собственной частотой колебательного контура

2 амплитуда тока зависит от величины активного сопротивления

3 разность фаз между током и напряжением равна нулю

4 напряжение на катушке индуктивности и напряжение на конденсаторе равны между собой и во много раз больше внешнего, равного напряжению на активном сопротивлении

5 общее сопротивление равно активному т.к XL=XC

6 амплитуда колебаний (величина заряда) устанавливается не мгновенно, а в течение некоторого проме­жутка времени

7 энергия полностью поступает в электрическую цепь и безвозвратно превращается в другие виды энергий.

32)Переменный ток – это такой ток, направление и числовое значение которого меняются с течением времени (знакопеременный ток).

Переменный ток имеет следующие характеристики: амплитуду, частоту, период.

Промежуток времени, по истечении которого изменение переменной величины (ЭДС, напряжения, тока) повторяются, называется периодом. Период измеряется в секундах и обозначается Т.

Число периодов в секунду называется частотой переменного тока. Частота обозначается f и измеряется в герцах (Гц).

Между периодом и частотой существует следующая зависимость: T = 1/f; f = 1/T

Переменный электрический ток имеет форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота.

Электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax - это величина напряжения, соответствующая максимальному значению синусоиды. Среднее значение напряжения электрического тока Uср - это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

Uср = 2 * Umax / π = 0,636 Umax

Максимальное же напряжение следует из формулы:

Umax = Uизм / 0,7 = 220 / 0,7 = 314,3 вольт

Получение однофазного переменного тока. Такой ток получают от генераторов переменного тока.Между полюсами N и S электромагнита вращается стальной цилиндр , на котором укреплена рамка, изготовленная из медного изолированного провода. Концы рамки присоединены к медным кольцам, изолированным от вала. К кольцам прижаты неподвижные щетки , которые соединены проводами с приемником энергии . Вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон индуктируются электродвижущие силы, которые, суммируясь, образуют общую электродвижущую силу. При каждом обороте рамки направление общей электродвижущей силы изменяется на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами электромагнита. Индуктируемая в рамке электродвижущая сила также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Следовательно, при равномерном вращении рамки в ней будет индуктироваться электродвижущая сила, периодически изменяющаяся по величине и направлению.

Если неподвижные щетки , соединенные проводами с приемником энергии , образуют замкнутую электрическую цепь, то от источника энергии к приемнику будет протекать переменный однофазный ток.

Время, в течение которого переменный ток совершает полный цикл изменений по величине и направлению, называется периодом. Он обозначается буквой Т и измеряется в секундах. Число периодов в секунду называется частотой переменного тока. Она обозначается буквой f и измеряется в герцах.

Так как частота показывает число полных циклов изменения тока по величине и направлению за одну секунду, то период определяется как частное от деления одной секунды на частоту: Т=1/f,

откуда f=1/T.

В технике применяют переменные токи различных частот. В России все электростанции вырабатывают электроэнергию переменного тока стандартной частоты - 50 гц. Этот ток называют током промышленной частоты и используют для снабжения электроэнергией промышленных предприятий и для освещения.

Получение трехфазного переменного тока. В технике широкое применение находит трехфазный переменный ток. Трехфазным током называют систему, состоящую из трех однофазных токов одинаковой частоты, сдвинутых по фазе на одну треть периода друг относительного друга и протекающих по трем проводам. Трехфазный ток получают в трехфазном генераторе, создающем три электродвижущие силы, сдвинутые по фазе на угол 120° (одну треть периода).

Простейший генератор трехфазного тока представляет собой кольцеобразный стальной сердечник, на котором расположены три обмотки, сдвинутые одна относительно другой по окружности сердечника на 120°. Сердечник с обмотками называют статором генератора, а вращающийся внутри статора электромагнит - ротором. По обмотке ротора, называемой обмоткой возбуждения, проходит постоянный ток, который намагничивает ротор, образуя северный N и южный S полюсы. При вращении ротора созданное им магнитное поле пересекает обмотки статора, в которых индуктируется электродвижущая сила. Величина электродвижущей силы зависит от скорости, с которой магнитные силовые линии ротора пересекают магнитное поле статора. Полюсы ротора и обмотки статора должны быть такими, чтобы в каждой из обмоток статора возникала синусоидальная электродвижущая сила, сдвинутая по фазе на 120°.

Если к каждой из трех обмоток генератора подключить нагрузку, то в результате получатся три цепи однофазного переменного тока. При равенстве сопротивлений потребителей амплитуды токов в каждой цепи будут равны между собой, а фазовые соотношения между токами будут такими же, как и между электродвижущими силами в обмотках генератора. Каждую из обмоток генератора вместе с внешней цепью, присоединенной к ней, принято называть фазой. Чтобы из этих независимых однофазных систем образовать единую трехфазную систему, необходимо соединить отдельные обмотки. Обмотки генератора могут соединяться двумя способами: звездой и треугольником.

Напряжение между линейными проводами называют линейным, а напряжение, а каждой фазе - фазным.

Фазы трехфазного генератора соединяют следующим образом: конец первой фазы с началом второй, конец второй с началом третьей и конец третьей с началом первой, а к точкам соединения фаз подключают линейные провода. Поскольку фазы потребителя или генератора при таком соединении подключаются непосредственно к линейным проводам, фазные напряжения их равны линейным, т. е. Uф=Uл, а линейные токи по абсолютной величине больше фазных в 1,73 раза при одинаковой нагрузке фаз. Соединение треугольником обмоток генераторов встречается довольно редко. В двигателях трехфазного тока концы обмоток можно соединить звездой или треугольником.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]