
- •1.Дискретизация аналоговых сигналов. Эффекты размножения и наложения спектров. Выбор частоты дискретизации.
- •Дискретизация периодического аналогового сигнала с ограниченным спектром. Эффект наложения спектров. Выбор частоты дискретизации
- •Реализовать такой фильтр можно только при условии
- •2.Прореживание и интерполяция дискретных сигналов.
- •Нулевого и первого порядков
- •3.Цифровые фильтры. Понятие о рекурсивных и нерекурсивных цф, бих- и ких-фильтрах. Импульсная характеристика цф.
- •4.Определение выходного сигнала фильтра по входному сигналу и импульсной характеристике
- •5. Системная функция цифрового фильтра. Нули и полюсы системной функции. Формы программной реализации фильтров (прямая и каноническая)
- •В виде последовательного соединения двух фильтров
- •6. Частотная характеристика цифрового фильтра.
- •7. Критерии устойчивости цифровых фильтров.
- •8.Коэффициенты системной функции устойчивого звена второго порядка
- •9. Нерекурсивный цифровой фильтр с линейной фчх.
- •Выходной сигнал фильтра определяется следующим соотношением
- •10. Синтез нерекурсивного фильтра с линейной фчх методом ряда Фурье и «окна»
- •11. Синтез нерекурсивного фильтра с линейной фчх методом наименьших квадратов
- •Функция d(θ) определяется следующим образом
- •12. Синтез нерекурсивного фильтра с линейной фчх методом наилучшей равномерной (чебышевской) аппроксимации
- •Сформируем взвешенную функцию ошибки
- •13. Синтез рекурсивных цифровых фильтров методом билинейного z-преобразования.
- •14. Нерекурсивный 90-градусный фазорасщепитель.
- •15. Всепропускающая цифровая цепь
- •16.Рекурсивный 90-градусный фазорасщепитель
- •17. Генераторы пилообразных, прямоугольных, треугольных и трапецеидальных колебаний
- •18. Цифровые синусно-косинусные генераторы.
- •19. Цифровые преобразователи частоты (преобразователь с выходным фильтром, квадратурный преобразователь частоты)
- •Пусть сигнал на входе преобразователя описывается соотношением
- •20. Цифровые амплитудные детекторы (детектор-выпрямитель, детектор с блоком извлечения квадратного корня)
- •21. Синхронный амплитудный детектор с управляемым косинусно-синусным генератором.
- •22. Фазовые детекторы (детектор с выходным фнч, квадратурный детектор).
- •Пусть сигнал на входе детектора описывается соотношением
- •23.Квадратурный фазовый детектор с пилообразной детекторной характеристикой.
- •24.Автокорреляционный частотный детектор с выходным фнч.
- •25. Квадратурный автокорреляционный частотный детектор.
- •26.Квадратурный автокорреляционный частотный детектор с внутренним амплитудным ограничением.
В виде последовательного соединения двух фильтров
Из рисунка видно, что для хранения одних и тех же переменных используются две линии задержки, поэтому одну из них можно удалить. При этом схема фильтра преобразуется к виду, представленному на рисунке 2.8. Это и есть каноническая форма программной реализации фильтра.
Рисунок 2.8 – Каноническая форма программной реализации фильтра
Достоинством канонической формы является в два раза меньшее количество элементов задержки, следовательно, ячеек памяти вычислительного устройства.
На рисунке 2.8 показана каноническая форма фильтра N-го порядка на одной линии задержки, состоящей из N элементов. Однако обычно вместо структуры, изображенной на рисунке 2.8, используется параллельное или последовательное соединение звеньев второго порядка. Такое представление фильтра связано с возможностью представления системной функции (2.7) в виде произведения или суммы системных функций с полиномами второго порядка в числителе и знаменателе
, (2.9)
,
(2.10)
где L – порядковый номер звена, Lmax – максимальное значение номера звена
При четном N фильтр состоит из N/2 звеньев второго порядка, при нечетном N фильтр состоит из одного звена первого порядка и (N-1)/2 звеньев второго порядка.
Системная функция звена первого порядка отличается от системной функции звена второго порядка тем, что коэффициенты B2 и A2 равны нулю.
Соотношению (2.9) соответствует схема рисунка 2.9а, а соотношению (2.10) – схема рисунка 2.9б.
Рисунок 2.9- Последовательное (а) и параллельное (б) соединение
звеньев фильтра
Типовая схема звена второго порядка приведена на рисунке 2.10. На входе звена показан масштабный коэффициент ML (как правило, меньше единицы), предотвращающий появление в процессе вычислений значений сигналов фильтра, выходящих за пределы разрядной сетки вычислительного устройства.
Рисунок 2.10 – Типовое звено второго порядка
6. Частотная характеристика цифрового фильтра.
Комплексным коэффициентом передачи
фильтра
является отношение комплексной амплитуды
выходного сигнала фильтра к комплексной
амплитуде входного синусоидального
сигнала
.
Коэффициентом передачи фильтра К называется модуль комплексного коэффициента передачи
Частотной характеристикой цифрового
фильтра
называется зависимость комплексного
коэффициента передачи фильтра от
частоты.
Амплитудно-частотной характеристикой
(АЧХ)
называется зависимость модуля комплексного
коэффициента передачи от частоты
.
Фазочастотной характеристикой (ФЧХ) называется зависимость аргумента комплексного коэффициента передачи фильтра от частоты.
.
Для определения комплексного коэффициента передачи фильтра подадим на вход фильтра с прямой формой реализации (рисунок 2.5) комплексный сигнал с единичной амплитудой
.
Согласно определению комплексного коэффициента передачи комплексный выходной сигнал должен быть равен
.
Из схемы рисунка 2.5 следует, что выходной комплексный сигнал фильтра определяется следующим соотношением
.
Из последнего соотношения получим
(2.11)
Сравнивая последнее соотношение с
выражением для системной функции
цифрового фильтра (2.7), можно сформулировать
правило определения комплексного
коэффициента передачи при известной
системной функции фильтра: для
нахождения комплексного коэффициента
передачи нужно в выражении для системной
функции заменить z
на
:
,
(2.12)
где
- нормированная частота – отношение
текущей частоты f к частоте
дискретизации FД.