Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KhIMIYaVOPROS_pizdets_kakoy-to.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
3.14 Mб
Скачать
  1. Э нтропия хим. Реакций. Энергия Гиббса

  1. 1)Скорость реакции зависит от природы реагирующих веществ. Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2)   Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3)   Скорость реакции значительно повышается с повышением температуры. Например, для горения топлива необходимо его поджечь, т.е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2-4 раза.

4)   Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ. Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок. Только для гомогенных реакций.

5)   Скорость реакции зависит от наличия катализаторов или ингибиторов.

Количество вещества выражают в МОЛЯХ, а объем в ЛИТРАХ. В этом случае мы получаем удобную для работы величину - КОНЦЕНТРАЦИЮ вещества в моль/л, которая ИЗМЕНЯЕТСЯ в ходе реакции.

Скорость реакции A+B→C пропорциональна произведению концентрации вещества А на концентрацию вещества В.

W=K[A][B], где К коэффициент пропорциональности, называемый константой скорости данной реакции.

  1. Колебательные реакции - это реакции, в ходе которых концентрации промежуточных продуктов и скорость реакции изменяются, возрастая и уменьшаясь. Колебательные реакции наблюдаются в ходе сложных химических реакций как проявление некоторой местной или временной термодинамической неустойчивости, которая может возникнуть в результате ускорения реакции ее продуктами ( автокатализ) или при возможности протекания реакции по нескольким путям с различными промежуточными продуктами при незначительном изменении концентраций веществ и по другим причинам

КОЛЕБАТЕЛЬНЫЕ РЕАКЦИИ - химические реакции, в ходе которых наблюдаются колебания (в основном периодические) скорости реакции и (редко) концентраций некоторых промежуточных веществ. Периоды большинства колебательных реакций составляют от долей секунды до десятков минут. Колебательные реакции, возникающие при работе химических реакторов, как правило, вредны, приводят к аварийным ситуациям. Колебательные реакции лежат в основе важнейших биологических процессов - генерации нервных импульсов и биоритмов, мышечного сокращения. Химические колебания - частный случай пространственно-временной самоорганизации неравновесных систем.

КОЛЕБАТЕЛЬНЫЕ РЕАКЦИИ – класс окислительно-восстановительных периодических реакций. Механизм реакции напоминает работу устройства со сдерживающей защелкой. Впервые такие реакции были обнаружены в 1951 московским химиком Б.П.Белоусовым.

Колебательные реакции протекают с участием катализатора (впервые это было обнаружено в процессе реакции при наличии ионов церия) и состоят, как правило, из двух стадий.

Необходимые условия, обеспечивающие возможность протекания таких реакций:

а) скорость первой стадии должна заметно превышать скорость второй стадии;

б) на второй стадии должно возникать соединение, тормозящее протекание первой стадии (его называют ингибитором).

  1. Скоростью химической реакции называется число элементарных актов реакции, происходящих в единицу времени в единице объема (в случае гомогенных реакций) или на единице поверхности раздела фаз (в случае гетерогенных реакций).

Все способы выражения скорости реакции сводятся к изменению коли-чества вещества во времени. Для гетерогенных реакций скорость определяется

выражением v = Δn/(S Δτ), где Δn  изменение количества вещества, S  площадь поверхности раздела фаз, Δτ  промежуток времени; для гомогенных 

v = Δn/(V Δτ), здесь V  объем реакционной системы.

В последнем уравнении отношение изменения количества вещества к объему представляет собой изменение его концентрации, поэтому скорость гомогенной реакции обычно характеризуют изменением концентрации (моль/л) какого-либо из реагирующих веществ или продуктов реакции за единицу времени ( обычно в минутах или секундах).

При практическом определении скорости химической реакции обычно измеряют ряд концентраций одного из реагирующих веществ в следующие друг за другом моменты времени.

Очевидно, что значение скорости реакции может быть получено по изменению концентрации любого компонента реакции, т.к. само стехиометрическое уравнение реакции показывает, что между концентрациями реагирующих веществ имеется простое соотношение.

Зависимость скорости реакции от температуры приближённо описывается эмпирическим законом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость большинства химических реакций возрастает в 2- 4 раза.

Математическое выражение этой закономерности:

vt = v0 n или kt = k0n

где v0 (или k0) – скорость реакции при температуре to;

vt (или kt ) – скорость реакции при температуре t1;

γ – температурный коэффициент скорости реакции;

– число десятков градусов изменения температуры.

Температурный коэффициент показывает, как увеличится скорость реакции при повышении температуры на 10 градусов; он имеет свое значение для каждой конкретной реакции, т. к. зависит от природы реагирующих веществ.

Определив экспериментально величину γ (или воспользовавшись справочными данными) можно приближённо рассчитать значение скорости при любой температуре (в относительно небольшом температурном интервале).

Более строго зависимость скорости от температуры описывается уравнением Аррениуса.

Входящие в это уравнение величины k, Ea, T, R определены ранее. Величина выражает так называемый стерический фактор, который также может существенно влиять на скорость реакции. . Его смысл в том, что, кроме обладания энергией активации, для осуществления реакции необходимо, чтобы молекулы при столкновении были определённым образом (благоприятно) ориентированны друг относительно друга в пространстве

Большое влияние температуры на скорость реакций находит своё объяснение в теории активации. С ростом температуры средняя энергия молекул системы возрастает.

Порядок химической реакции по данному веществу (или частный порядок реакции) – это число, равное степени, в которой концентрация этого вещества входит в кинетическое уравнение реакции, т.е. в выражение скорости реакции по закону действующих масс. Сумма показателей степеней, в которых концентрации всех исходных веществ входят в кинетическое уравнение закона действующих масс, определяет общий порядок реакции.

К реакции могут приводить не все, а только так называемые эффективные столкновения, число которых составляет лишь малую долю от их общего числа. Столкновение может быть эффективным, если оно происходит между молекулами, обладающими некоторым избытком энергии по сравнению со средней энергией молекул системы (Еср) при данной температуре.

Молекулы, обладающие такой избыточной энергией, называются активными, а сам избыток энергии  энергией активации (Еа). Понятно, что, чем больше доля активных молекул, тем выше скорость реакции.

Энергия активации является тем фактором, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции. Очевидно поэтому, что она различна для разных реакций.Если энергия активации очень мала (меньше 40 кДж/моль), то это означает, что значительная часть столкновений частиц реагирующих веществ приводит к химическим превращениям. Скорости таких реакций велики, они могут протекать практически мгновенно (например, ионные реакции в растворах).Если энергия активации очень велика (больше 120 кДж/моль), то это означает, что лишь малая часть столкновений взаимодействующих частиц приводит к химическим превращениям. Такие реакции идут очень медленно (например, процессы коррозии).

МОЛЕКУЛЯРНОСТЬ РЕАКЦИИ, число частиц реагентов, взаимодействующих друг с другом в одной элементарной (простой) р-ции и превращающихся в продукты.

Связь энергии активации с константой скорости:

Аррениуса уравнение, температурная зависимость константы скорости К элементарной хим. реакции:

где A-предэкспоненциальныи множитель (размерность совпадает с размерностью к), Еа -энергия активации, обычно принимающая положит. значения, Т-абс. температура, k-постоянная Больцмана. Принято приводить Еа в расчете не на одну молекулу. а на число частиц NA = 6,02*1023 (постоянная Авогадро) и выражать в кДж/моль; в этих случаях в уравнении Аррениуса величину k заменяют газовой постоянной R. 

Катализ - химическое явление, суть которого заключается в изменении скоростей химических реакций при действии некоторых веществ (их называют катализаторами).

Различают положительный катализ (ускорение реакций) и отрицательный катализ (замедление реакций). Обычно термин «катализ» относят именно к положительному катализу, а отрицательный называют ингибированием. Соответственно «отрицательные катализаторы» называются ингибиторами.

Катализаторами называются вещества, способные ускорять химические реакции, сами оставаясь при этом неизменными.

Гомогенный катализ – каталитические реакции, в которых реагенты и катализатор находятся в одной фазе. В случае гомогенно-каталитических процессов катализатор образует с реагентами промежуточные реакционноспособные продукты. Рассмотрим некоторую реакцию

А  +  В  ––>  С

В присутствии катализатора осуществляются две быстро протекающие стадии, в результате которых образуются частицы промежуточного соединения АК и затем (через активированный комплекс АВК#) конечный продукт реакции с регенерацией катализатора:

А  + К   ––>   АК

АК  +  В   ––>   С + К

Гетерогенный катализ каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами. Механизм гетерогенно-каталитических процессов значительно более сложен, чем в случае гомогенного катализа. В каждой гетерогенно-каталитической реакции можно выделить как минимум шесть стадий:

1.  Диффузия исходных веществ к поверхности катализатора.

2.  Адсорбция исходных веществ на поверхности с образованием некоторого промежуточного соединения:

А + В + К   ––>   АВК

3.  Активация адсорбированного состояния (необходимая для этого энергия есть истинная энергия активации процесса):

АВК   ––>   АВК#

4.  Распад активированного комплекса с образованием адсорбированных продуктов реакции:

АВК#   ––>   СDК

5.  Десорбция продуктов реакции с поверхности катализатора.

СDК   ––>   С + D + К

6.  Диффузия продуктов реакции от поверхности катализатора.

Специфической особенностью гетерокаталитических процессов является способность катализатора к промотированию и отравлению. 

Промотирование  увеличение активности катализатора в присутствии веществ, которые сами не являются катализаторами данного процесса (промоторов).

Отравление – резкое снижение активности катализатора в присутствии некоторых веществ (т. н. каталитических ядов).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]