
- •Заполнение электронами орбиталей:
- •Гибридизация ао – это взаимодействие (смешение) разных по типу, но близких по энергии атомных орбиталей данного атома с образованием гибридных орбиталей одинаковой формы и энергии.
- •Полярность связи
- •Э нтропия хим. Реакций. Энергия Гиббса
- •Химическое равновесие. Обратимые, необратимые реакции. Константа равновесия. Принцип Ле-Шателье
- •Катализ, его виды. Катализаторы, ингибиторы химических реакций.
- •Химические реакции делятся на реакции разложения, соединения, замещения, обмена, а также для органических веществ выделяют реакции изомеризации и поликонденсации.
- •Способы выражения состава растворов.
- •Гетерогенное равновесие. Растворимость и произведение растворимости.
- •Соль, образованная сильным основанием и сильной кислотой;
- •2)Соль, образованная слабым основанием и сильной кислотой;
- •Степень гидролиза h – отношение числа молей соли, подвергшихся гидролизу, к исходному количеству молей растворенной соли.
- •Классификация окислителей и восстановителей.Изменение о-в св-в в пс.
Гибридизация ао – это взаимодействие (смешение) разных по типу, но близких по энергии атомных орбиталей данного атома с образованием гибридных орбиталей одинаковой формы и энергии.
Гибридизация атома углерода сопровождается его возбуждением и переносом электрона с 2s- на 2р-АО:
АО с большой разницей в энергии (например, 1s и 2р) в гибридизацию не вступают. В зависимости от числа участвующих в гибpидизации p-АО возможны следующие виды гибридизации:
для атомов углерода и азота – sp3, sp2 и sp;
для атома кислорода – sp3, sp2;
для галогенов – sp3.
Гибридная АО асимметрична и сильно вытянута в одну сторону от ядра (форма неправильной восьмерки).
В отличие от негибридных s- или р-АО, она имеет одну большую долю, которая хорошо образует химическую связь, и малую долю, которую обычно даже не изображают. Гибридизованные АО при взаимодействии с орбиталями различных типов (s-, р- или гибридными АО) других атомов обычно дают σ-МО, т.е. образуют σ-связи. Такая связь прочнее связи, образованной электронами негибридных АО, за счет более эффективного перекрывания.
Пространственное строение молекул зависит от природы химической связи, возникающей между атомами, а следовательно, структуры их электронной оболочки. Так как в химической связи могут участвовать электроны s -, p -, d - и f - типа от каждого из взаимодействующих атомов, то в зависимости от типа и числа электронов, а также от возможности образования гибридных связей зависит строение молекул.
Полярность связи
характеристика химической связи (См. Химическая связь), показывающая перераспределение электронной плотности в пространстве вблизи ядер по сравнению с исходным распределением этой плотности в нейтральных атомах, образующих данную связь. Количественной мерой П. х. с. служат т. н. эффективные заряды на атомах: разность между зарядом электронов, сосредоточенным в некоторой области пространства (порядка атомных размеров) вблизи ядра, и зарядом ядра. Эта мера приближённая, поскольку выделить в молекулах области, относящиеся к отдельным атомам и отдельным связям (если их несколько), однозначно нельзя. Связи строго неполярны лишь в двухатомных гомоядерных молекулах, в остальных случаях они в той или иной степени полярны. Обычно ковалентные связи слабо полярны, ионные связи сильно полярны. П. х. с. иногда указывают символами зарядов у атомов (например, Н+δ — Cl-δ, где δ — некоторая доля элементарного заряда).
Полярность молекул
Молекулы, которые образованы атомами одного и того же элемента, как правило, будут неполярными, как неполярны и сами связи в них. Так, молекулы Н2, F2, N2 неполярны.Молекулы, которые образованы атомами разных элементов, могут быть полярными и неполярными. Это зависит от геометрической формы.Если форма симметрична, то молекула неполярна (BeH2, BF3, CH4, CO2, SO3), если асимметрична (из-за наличия неподелённых пар или неспаренных электронов), то молекула полярна (NH3, H2O, SO2, NO2).При замене одного из боковых атомов в симметричной молекуле на атом другого элемента также происходит искажение геометрической формы и появление полярности, например в хлорпроизводных метана CH3Cl, CH2Cl2 и CHCl3 (молекулы метана CH4 неполярны). Полярность несимметричной по форме молекулы вытекает из полярности ковалентных связей между атомами элементов с разной электроотрицательностью.
Как отмечалось выше, происходит частичный сдвиг электронной плотности вдоль оси связи к атому более электроотрицательного элемента, например:
Hδ+ → Clδ− Bδ+ → Fδ−
Cδ− ← Hδ+ Nδ− ← Hδ+ (здесь δ - частичный электрический заряд на атомах).
Донорно-акцепторная связь, координационная связь, термин, обозначающий один из способов образования химической ковалентной связи. Обычная ковалентная связь между двумя атомами обусловлена взаимодействием двух электронов — по одному от каждого атома. Донорно-акцепторная связь осуществляется за счёт пары электронов одного атома (донора) и свободной (незаполненной) орбитали другого (акцептора). Схематически это различие можно выразить так:
В
обоих случаях электроны становятся
общими для двух атомов. Типичным примером
является образование иона аммония при
реакции аммиака с ионом водорода
(протоном):
В
молекуле аммиака азот имеет неподелённую
пару электронов, у иона водорода
1s-орбиталь свободна. При достаточном
сближении молекулы NH3 и иона Н+
двухэлектронное облако азота попадает
в сферу притяжения иона водорода и
становится общим и для атома азота, и
для атома водорода, т. е. возникает
четвёртая ковалентная связь N — Н. Все
связи N — Н в этом ионе становятся
равноценными и неразличимыми. Ещё один
важный пример — образование иона
оксония:
В данном случае молекула воды — донор, протон — акцептор.
Этот способ образования ковалентной связи играет большую роль в химии комплексных соединений.
Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью (>1,5 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.
Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу. Образуются ионы.
Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.
Характеристикой подобных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.).
Металлическая связь
В металлах валентные электроны удерживаются атомами крайне слабо и способны мигрировать. Атомы, оставшиеся без внешних электронов, приобретают положительный заряд. Они образуют металлическую кристаллическую решётку.
Совокупность обобществлённых валентных электронов (электронный газ), заряженных отрицательно, удерживает положительные ионы металла в определённых точках пространства - узлах кристаллической решётки, например, металла серебро.
Внешние электроны могут свободно и хаотично перемещаться, поэтому металлы характеризуются высокойэлектропроводностью (особенно золото, серебро, медь, алюминий).
Две или больше кратные связи могут образовывать в хим. соединении системы кумулированных и сопряженных связей. В первом случае две двойные связи примыкают к одному и тому же атому как, напр., в аллене Н2С=С=СН2; во втором - двойные или (и) тройные связи разделены одной простой, как, напр., в 1,3-бутадиене Н2С=СН—СН=СН2 или акрилонитриле
. В сопряженных системах кратность связи не м. б. определена целым числом. Мерой кратности связи (заселенности ее электронами) служит дробная величина порядка связи, расчет к-рой осуществляется обычно при помощи методов квантовой химии. Простейшим примером молекулы, где связь Н—С сопряжена со связью С=С, может служить молекула пропилена. В этой молекуле благодаря влиянию метильной группы возникает электрическая асимметрия двойной связи
которая выражается, например, в дипольном моменте молекулы пропилена (0,35 D). Смещение π-электронной пары, очевидно, связано с некоторым смещением σ-электронов связей С—Н метильной группы в том же направлении. Обычно это изображают следующим образом:
В этом и заключается статический эффект сопряжения простых и двойных связей (σ,π-сопряжение).
Сопряжение
связей Hg—С
и С=О достигает здесь такой степени, что
ряд реакций этого вещества,
протекающих с элиминированием ртути,
идет не по месту разрыва связи Hg—С, а
по кислородному атому группы
С=О, т. е. с
переносом
реакционного центра,
например
КОМПЛЕМЕНТАРНОСТЬ в химии, пространственное соответствие структур двух молекул (разных или одинаковых), благодаря к-рому возможно образование между ними водородных связей и осуществление межмол. взаимодействий. В широком смысле также взаимное соответствие противоположных электростатич. зарядов намолекулах и энергий сопряженных р-ций.
Водородные связи (обозначены точками) между комплементарными основаниями, входящими в ДНК и РНК; R остаток фосфорилированной пентозы. этом образуются специфич. пары комплементарных оснований, имеющие почти одинаковые размеры. Поэтому двойная спираль имеет очень однородную регулярную структуру, мало зависящую от конкретной последовательности оснований - св-во очень важное для обеспечения универсальности механизмов репликации (самовоспроизведение ДНКили РНК), транскрипции (синтез РНК на ДНК-матрице) и трансляции (синтез белков на РНК-матрице). В каждом из этих т.н. матричных процессов комплементарность играет определяющую роль. Напр., при трансляции важное значение имеет комплементарность между тройкой оснований матричной РНК (т.н. кодоном, см.Генетический код) и тройкой оснований транспортной РНК (поставляют во время трансляции аминокислоты). Комплементарность определяет также вторичную структуру нуклеиновых к-т. Одноцепочечные РНК благодаря комплементарности оснований, навиваясь сами на себя, образуют относительно короткие двухспиральные области ("шпильки" и "петли"), соединенные одноцепочечными участками. Комплементарность в отдельных парах оснований ДНК может нарушаться из-за появления отклонений в их строении, к-рые могут возникать спонтанно или в результате действия разл. факторов (химических и физических). Следствием этих изменений м. б. мутации.Комплементарность лежит в основе мн. явлений биол. специфичности, связанных с "узнаванием" на мол. уровне, -ферментативного катализа, самосборки биол. структур, высокой точности передачи генетич. информации и др.
Межмолекулярные взаимодействия, взаимодействия молекул между собой, не приводящее к разрыву или образованию новых химических связей. Межмолекулярные взаимодействия определяют отличие реальных газов от идеальных, существование жидкостей и молекулярных кристаллов. От межмолекулярных взаимодействий зависят многие структурные, спектральные, термодинамические, теплофизические и другие свойства веществ. Появление понятия межмолекулярные взаимодействия связано с именем Й. Д. Ван-дер-Ваальса, который для объяснения свойств реальных газов и жидкостей предложил в 1873 уравнение состояния, учитывающее межмолекулярные взаимодействия. Поэтому силы межмолекулярного взаимодействия часто называют ван-дер-ваальсовыми.
Силы межмолекулярного взаимодействия можно достаточно обоснованно подразделить на три вида - электростатические, поляризационные (индукционные) и дисперсионные.
При малых расстояниях между молекулами (R ~ l) различать отдельные виды межмолекулярных взаимодействий можно лишь приближенно, при этом, помимо названных трех видов, выделяют еще два, связанные с перекрыванием электронных оболочек, - обменное взаимодействие и взаимодействия, обязанные переносу электронного заряда. Несмотря на некоторую условность, такое деление в каждом конкретном случае позволяет объяснять природу межмолекулярного взаимодействия и рассчитать его энергию.
Энергия
электростатического взаимодействия
Vэл-ст представляет
собой энергию кулоновского взаимодействие,
вычисленную в предположении, что
распределение зарядовой плотности
отвечает изолированным молекулам (R
=
).
В общем случае электрический потенциал
вокруг молекулы изменяется не только
по абсолютной величине, но и по знаку.
Поляризационное взаимодействие обусловлено деформацией электронной оболочки одной молекулы под влиянием электрический поля другой, что всегда приводит к понижению энергии (притяжению молекул). При больших расстояниях между нейтральными молекулами главный вклад в поляризационную энергию Vполдает взаимодействие постоянного диполя полярной молекулы с индуцированным диполем другой. Поэтому это взаимодействие иногда называют индукционным. Согласно формуле Дебая,
Дисперсионное межмолекулярное взаимодействие определяется корреляцией движения электронов двух взаимодействующих молекул, в результате чего среднее расстояние между электронами этих молекул несколько увеличивается. Это приводит к уменьшению энергии их взаимодействия, т.е. к притяжению молекул. Дисперсионное взаимодействие имеет универсальный характер: оно существует между любыми молекулами. Энергия дисперсионного взаимодействие Vдисп двух атомов или сферически симметричных молекул при R>>l приближенно описывается формулой Л о н д о н а:
Энергия обменного взаимодействия молекул Vобм обусловлена тем, что в соответствии с принципом Паули в одном и том же квантовом состоянии не могут находиться два электрона с одинаковыми спинами. Вследствие этого электронная плотность в пространстве между молекулами при перекрывании их электронных оболочек уменьшается.
Полная энергия межмолекулярного взаимодействия, или межмолекулярный потенциал, V приблизительно равняется сумме вкладов отдельных видов межмолекулярных взаимодействий:
Специфические межмолекулярные взаимодействия. Частный случай межмолекулярных взаимодействии - водородная связь. От межмолекулярных взаимодействий полярных молекул. не содержащих атомов Н, она в целом не отличается ни по энергии диссоциации (10-100 кДж/моль), ни по относительной величине различных вкладов в межмолекулярный потенциал; во всех случаях главный вклад в энергию притяжения дает Vэл-ст (кривая на рис. 1 относится к Н-связи НО—Н ...ОН2). Специфично для водородной связи сильное взаимодействие различных колебательных степеней свободы в комплексах. Это приводит, в частности, к длинноволновому смещению и уширению ИК полосы АН-группы (например, О—Н).
Многочастичные межмолекулярные взаимодействияДля системы, состоящей более чем из двух молекул, полная энергия межмолекулярных взаимодействия отличается от суммы парных взаимодействий (неаддитивность). Так, при взаимодействие трех частиц А, В, С энергию межмолекулярных взаимодействий можно записать в след. виде:
где первые три слагаемых представляют собой энергии парных межмолекулярных взаимодействий, а последний член-энергию тройного межмолекулярного взаимодействия, которое обусловливает отступление от аддитивности.
В твердом состоянии вещество может также иметь различную кристаллическую структуру, тогда говорят о его различных полиморфных модификациях. Вещество также может быть в состоянии растворов, причем с разными равновесными концентрациями в разных растворителях. Обобщающим названием всех таких возможных состояний будет понятие офазовом состоянии вещества. Под фазой понимается однородная макроскопическая часть системы, обладающая одинаковыми свойствами - по крайней мере, составом (компонентами) и агрегатным состоянием - во всех ее точках, и имеющая четко выраженную границу раздела с другими фазами. Если две или более фаз, соприкасающихся между собой, могут одновременно существовать сколь угодно долго, то говорят о фазовом равновесии.
Процессы, основанные на фазовых равновесиях, входят в группу физических процессов. Равновесие жидкость - пар используется в процессах глубокой очистки веществ, таких как дистилляция и ректификация, а также для легирования из паровой фазы при выращивании монокристаллов полупроводников из расплавов; равновесие твердое - пар - при отжиге полупроводниковых соединений; жидкость - твердое - во всех процессах выращивания монокристаллов из расплавов и эпитаксиальных слоев из растворов-расплавов, при глубокой очистке металлов.
Названные выше равновесия являются двухфазными. Достаточно широко в технологии материалов ядерной энергетики и полупроводниковой технологии используются и трехфазные равновесия, например твердое - жидкость - пар при синтезе разлагающихся соединений и выращивании их монокристаллов из расплавов.
Сразу подчеркнем, что из равенства потенциалов можно сделать только вывод о самом факте равновесия, но нельзя сказать, в каких количествах эти фазы присутствуют. О количестве (массе) веществ в отдельных фазах может ответить только рассмотрение системы с ее предысторией, знание, какое именно количество энергии она имеет или получила относительно некоторого известного начального состояния.
Каждое вещество, точнее химическая термодинамическая система при постоянных физических условиях (давление p, температура T) обладает определенным запасом энергии, называемым внутренней энергией (обозначение U). Внутренняя энергия – это функция состояния системы. Для химии интерес представляет не само абсолютное значение внутренней энергии, а изменение внутренней энергии ΔU, вызванное изменением состояния вещества, происходящим при химических процессах. Таким образом, величина ΔU есть результат протекания в системе любого процесса.
ΔU = ∑Uпродуктов - ∑Uреагентов
энтальпия реакции ΔH - это тепловой эффект реакции при постоянном давлении
ΔH = ΔU + pΔV |
Для сравнения тепловых эффектов различных реакций, а следовательно, внутренних энергий и энтальпий, значения этих величин необходимо приводить к одинаковым условиям (давлению температуре). В качестве стандартных условий выбрано нормальное атмосферное давление (1.013·105 Па, или 1 атм) при постоянной температуре для реакции без участия газов [для газовых систем давления каждого газа реагента или продукта должно быть равно 1 атм]. ВеличиныΔU и ΔH в этих условиях называют стандартными и обозначаются ΔU°Т и ΔH°Т (верхний индекс отвечает стандартному давлению нижний индекс – стандартной температуре). Обычно значения ΔH°Т приводятся для различных температур, например ΔH°200, ΔH°400, ΔH°600 и т.д. Наибольшее число значений ΔH°Т относится (по международному соглашению) к 298,15 К (25°С) - ΔH°298,15 или просто как ΔH° и используется в практических расчетах. В первом приближении можно принять, что значение ΔH° мало зависит от температуры.
экзотермические реакции - это химические реакции, сопровождающиеся выделением теплоты в окружающую среду (Qp или Qv меньше нуля)
Для экзотермических реакций ΔU < 0 запас энергии продуктов оказывается меньшим чем запас энергии реагентов. Аналогично, энтальпия экзотермической реакции меньше нуля (отрицательная), ΔH < 0; другими словами реакционная система в целом [реагенты и(или) продукты в зависимости от обратимости или необратимости реакции] уменьшает свой запас энергии, что проявляется в нагревании сначала реакционной смеси, а затем и окружающей среды.
эндотермические реакции - это химические реакции, сопровождающиеся поглощением теплоты из окружающей среды (Qp или Qv больше нуля)
Для эндотермических реакций ΔU > 0, т.е. запас энергии продуктов больше, чем запас энергии реагентов. Аналогично значение энтальпии эндотермической реакции больше нуля (положительно), ΔH > 0; другими словами, реакционная система в целом [реагенты и (или) продукты] увеличивает свой запас энергии, что проявляется в охлаждении сначала реакционной смеси, а затем и окружающей среды.
При протекании обратимых процессов значение ΔH° прямой реакции численно равно и обратно по знаку значению ΔH° обратной реакции; так если прямая реакция экзотермическая то обратная реакция будет эндотермической.
Уравнение химической реакции, в котором приведено значение энтальпии этой реакции и указаны агрегатные состояния реагентов и продуктов, называются -термохимическое уравнение реакции.
Существуют два способа записи термохимических уравнений: термохимический и термодинамический. Согласно современному термодинамическому способу тепловой эффект реакции (в виде энтальпии реакции ΔH°) записывается отдельно после точки запятой от химического уравнения. В соответствии с более старым термохимическим способом тепловой эффект реакции Qp указывают непосредственно в уравнении химической реакции. При этом, если теплота передается от системы во внешнюю среду то ее значение записывается в виде слагаемого в правой части уравнения (после продуктов):
2Cт + O2г = 2CO2г + 220 кДж |
Если же теплота передается из внешней среды в систему, то применяют две альтернативные записи:
2Cт + H2Oг + 132 кДж = COг + H2г |
или
2Cт + H2Oг = COг + H2г - 132 кДж |
Таким образом, при указании теплового эффекта реакции в правой части уравнения его значения для экзотермических реакции положительны, для эндотермических реакций - отрицательны.
Закон гласит: тепловой эффект реакции зависит от вида и состояния исходных веществ и конечных продуктов, но не зависит от пути перехода (из начального состояния в конечное).
Или иначе: тепловое эффект реакции равен алгебраической сумме тепловых эффектов всех его промежуточных стадий:
ΔН = ΔН1 + ΔН2.
Следствия из закона Гесса:
1)Если в результате последовательных химических реакций система приходит в состояние, полностью совпадающее с исходным (круговой процесс), то сумма тепловых эффектов этих реакций будет равна нулю.
2)Тепловой эффект реакций (ΔНх.р.) равен сумме теплот образования (или ΔНобр.) конечных веществ (ΔНконеч. в-в) за вычетом суммы теплот образования исходных веществ (ΔНисх. в-в):
ΔНх.р. = Σ ΔНпрод. р-ции – Σ ΔНисх. в-в.