Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_voprosy_po_khimii_ekzamen.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
120.83 Кб
Скачать

Получение ацетилена

  1. В лабораториях и промышленности ацетилен чаще всего получается карбидным способом. Если кусочки карбида кальция поместить в сосуд с водой или если воду добавлять к карбиду кальция, начинается сильное выделение ацетилена: СаС2 + 2НОН → С2Н2 + Са(ОН)2. Со стороны промышленности полимерных материалов карбидный способ является малоэффективным. Он связан с большими затратами электроэнергии на получение карбида кальция.

  2. Применяется способ получения ацетилена из более доступного химического сырья – природного газа (метана).

Особенности получения ацетилена из метана:

а) если метан нагревать до высокой температуры, то он разлагается на углерод и водород;

б) одним из промежуточных продуктов этой реакции становится ацетилен: 2СН4 → 2С + 4Н2;

в) одной из характерных черт получения ацетилена из метана являются две идеи:

  • выделить его на промежуточной стадии;

  • не дать ацетилену возможности разложиться на углерод и водород

Применение ацетилена:

1) может применяться в качестве горючего при газовой сварке и резке металлов;

2) используется также для синтеза различных органических соединений;

3) в результате присоединения хлора к ацетилену получают растворитель – 1,1,2,2-тетрахлорэтан. Путем дальнейшей переработки тетрахлорэтана получаются другие хлорпроизводные;

4) при отщеплении хлороводорода от 1,1,2,2-тетрахлорэтана образуется трихлорэтен – растворитель высокого качества, который широко применяется при чистке одежды: СНСI = ССI2;

5) в больших количествах ацетилен идет на производство хлорэтена, или винилхлорида, с помощью полимеризации которого получается поливинилхлорид (используется для изоляции проводов, изготовления плащей, искусственной кожи, труб и других продуктов);

6) из ацетилена получаются и другие полимеры, которые необходимы в производстве пластмасс, каучуков и синтетических волокон.

  1. Ароматические углеводороды (арены). Бензол, электронное и пространственное строение. Промышленное получение и применение бензола. Гомологи бензола. Взаимное влияние атомов в ароматических соединениях.

Арены или ароматические углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Простейшие представители (одноядерные арены): Бензол и толуол

Многоядерные арены: нафталин С10Н8, антрацен С14Н10 и др.

Электронное и пространственное строение бензола с6н6.

  1. Атомы углерода в sp2-гибридизованном состоянии образуют циклическую систему.

  2. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).

  3. Замкнутая система сопряженных связей содержит 4n+2 π-электронов (n – целое число).

Применение и получение бензола

Бензол входит в состав бензина, широко применяется впромышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Хотя бензол входит в состав сырой нефти, в промышленных масштабах он синтезируется из других её компонентов. Токсичен, канцерогенен.

 В настоящее время основными источниками ароматических соединений, в том числе и бензола, являются продукты коксования каменного угля (коксовый газ и каменноугольная смола) и продукты переработки нефти.

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R):

 

Общая формула гомологического ряда бензола CnH2n-6 (n ≥ 6).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]