
- •1. Алканы
- •Способы получения алканов
- •Химические свойства алканов
- •2. Циклоалканы
- •Способы получения циклоалканов
- •Химические свойства циклоалканов
- •3. Алкены
- •Способы получения алкенов
- •Химические свойства алкенов
- •4. Алкины
- •Способы получения алкинов
- •Химические свойства алкинов
- •Формула Кекуле
- •Способы получения ароматических углеводородов
- •Химические свойства ароматических углеводородов
- •7. Галогеноуглеводороды
- •Способы получения галогеноуглеводородов
- •Химические свойства галогеноуглево-дородов
- •8. Спирты
- •Способы получения спиртов
- •Химические свойства спиртов
- •9. Фенолы
- •Способы получения фенолов
- •Химические свойства фенолов
- •10. Альдегиды и кетоны
- •Способы получения альдегидов и кетонов
- •Химические свойства альдегидов и ке-тонов
- •11. Карбоновые кислоты и их производные
- •Способы получения карбоновых кислот
- •Химические свойства карбоновых кислот и их производных
- •12. Жиры
- •13. Амины
- •Способы получения аминов
- •Химические свойства аминов
- •14. Аминокислоты
- •Способы получения аминокислот
- •Химические свойства аминокислот
- •15. Углеводы. Моносахариды. Олигосахариды. Полисахариды
- •Способы получения
- •Химические свойства
- •Амилоза
- •Амилопектин
- •Характеристика химических свойств
- •Характеристика химических свойств
Химические свойства карбоновых кислот и их производных
Карбоновые кислоты проявляют высокую реакционную способность и вступают в реакции с различными веществами, образуя разнообразные соединения, среди которых большое значение имеют функциональные производные: сложные эфиры, амиды, нитрилы, соли, ангидриды, гало-генангидриды.
1. а) 2CH3COOH + Fe → (CH3COO)2Fe + Н2 (образование солей)
б) 2CH3COOH + MgO → (CH3COO)2Mg + Н2O
в) CH3COOH + KOH → CH3COОК + Н2O
г) CH3COOH + NaHCO3 → CH3COONa + CO2 + Н2O
CH3COONa + H2O ↔ CH3COOH + NaOH (соли карбоновых кислот гидролизуются)
2. (образование вложных эфиров)
(омыление вложного эфира)
3. (получение хлорангидридов кислот)
4. (разложение водой)
5. CH3—COOH + Cl2 →hv → Cl—CH2—COOH + HCl (галогенирование в α-положение)
6. HO—CH=O + Ag2O →NH3 → 2Ag + Н2CO3 (Н2O + CO2) (особенности HCOOH)
HCOOH →t → CO + Н2O
12. Жиры
Жиры – сложные эфиры глицерина и высших одноатомных карбоновых кислот. Общее название таких соединений – триглицериды. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой С15Н31COOH, стеариновой С17Н35COOH) и ненасыщенных (олеиновой С17Н33COOH, линолевой С17Н31COOH). Жиры состоят главным образом из триглицеридов предельных кислот. Растительные жиры – масла (подсолнечное, соевое) – жидкости. В состав триглицеридов масел входят остатки непредельных кислот.
Жирам как сложным эфирам свойственна обратимая реакция гидролиза, катализируемая минеральными кислотами. При участии щелочей гидролиз жиров происходит необратимо. Продуктами в этом случае являются мыла – соли высших карбоновых кислот и щелочных металлов. Натриевые соли – твердые мыла, калиевые – жидкие. Реакция щелочного гидролиза жиров называется также омылением.
13. Амины
Амины – органические производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы. В зависимости от числа углеводородных радикалов различают первичные RNH2, вторичные R2NH, третичные R3N амины. По характеру углеводородного радикала амины подразделяются на алифатические (жирные), ароматические и смешанные (или жирноароматические). Названия аминов в большинстве случаев образуют из названий углеводородных радикалов и суффикса –амин. Например, CH3NH 2 – метиламин; CH3—CH2—NH2 – этиламин. Если амин содержит различные радикалы, то их перечисляют в алфавитном порядке: CH3—CH2—NH—CH3 – ме-тилэтиламин.
Изомерия аминов определяется количеством и строением радикалов, а также положением аминогруппы. Связь N—Н является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи. Третичные амины не образуют ассоциирующих водородных связей. Амины способны к образованию водородных связей с водой. Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается.
Способы получения аминов
1. R—NO2 + 6[Н] → R—NH2 + 2H2O (восстановление нитросоединений)
2. NH3 + CH3I → [CH3N+H3]I¯ →NH3 → CH3NH 2 + NH 4I (алкилирование аммиака)
3. а) С6Н5—NO2 + 3(NH4)2S → С6Н5—NH2 + 3S + 6NH3 + 2H2O (реакция Зинина)
б) С6Н5—NO2 + 3Fe + 6HCl → С6Н5—NH2 + 3FeCl2 + 2Н2O (восстановление нитросоединений)
в) С6Н5—NO2 + ЗН2 →катализатор, t → C6H5—NH 2 + 2Н2O
4. R—C≡N + 4[H] → RCH2NH2 (восстановление нитрилов)
5. ROH + NH3 →Al2O3,350 °C → RNH2 + 2H2O (получение низших алкиламинов С2—С4)