
- •8.Метод эквивалентного генератора
- •9.Электрические цепи однофазного переменного тока
- •9.1. Основные определения
- •10. Изображения синусоидальных функций времени в векторной форме
- •6.3. Изображение синусоидальных функций времени в комплексной форме
- •11.Резистор в цепи переменного тока
- •14. Реальная катушка индуктивности
- •15. Последовательное соединение активного сопротивлении
- •21..Измерение активной мощности в трехфазных цепях
- •22.Базовые принципы действия трансформатора
- •23.Уравнения линейного трансформатора.
- •24.Режимы работы трансформатора
- •26. Внешняя характеристика трансфарматора
- •27.Характеристика кпд трансфарматора
- •28.Трехфазные трансфарматоры
- •29.Автотрансфарматоры
- •30.Измерительные трансфарматоры
- •32.Способы регулирования напряжения автономного асинхронного генератора. Самовозбуждение асинхронного электрического генератора
- •33. Вращающие моменты и механические характеристики асинхронных двигателей
- •34Вопрос
- •34. Регулирование скоростей вращения асинхронных электродвигателей
- •Пуск в ход асинхронных электродвигателей
- •10.19. Однофазные асинхронные двигатели
- •36Электрические машины постоянного тока
- •37.Режимы работы машины постоянного тока
- •38Способы возбуждения генераторов постоянного тока
- •40.Полупроводниковые приборы
- •44.Двухполупериодный выпрямитель
- •45]Однополупериодный выпрямитель (четвертьмост)
- •1. Схема выпрямления с выводом от средней точки трансформатора.
- •2. Мостовая схема
11.Резистор в цепи переменного тока
Резистор
или активное сопротивление цепи – это
элемент, в котором происходит рассеивание
энергии в виде тепла или превращение
электрической энергии в другой вид
энергии: в световую, химическую или
механическую.
Активное сопротивление оказывает реальное сопротивление проходящему току и потере мощности. На нем происходит преобразование электрической энергии в другие виды –световую,тепловую,звуковую,механическую и т.д.,а обратного перехода нет.
Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода. Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости. Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.
Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.
Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).
Рис.
1
Пусть напряжение на концах цепи меняется по гармоническому закону
.
Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:
.
Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:
При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.
12. Индуктивность характеризует наличие изменяющегося магнитного поля, на индуктивном сопротивлении происходят преобразования электрической энергии в энергию магнитного поля и наоборот.
Изменение тока в цепи с индуктивностью L вызывает ЭДС самоиндукции, которая по закону Ленца противодействует изменению тока. При увеличении тока ЭДС самоиндукции действует навстречу току, а при убывании - в направлении тока, противодействуя его уменьшению. Вследствие этого ток в цепи с катушкой индуктивности отстает от напряжения на угол π/2 радиан - четверть периода (рис. 5).
Закон Ома для цепи переменного тока, содержащей индуктивность, будет иметь вид
I = UL / xL.
Индуктивный
элемент характеризует наличие
изменяющегося магнитного поля, созданного
изменяющимся током. Индуктивный элемент
с индуктивностью L учитывает энергию
магнитного поля
и
явление самоиндукции. При изменении
тока в индуктивности возникает ЭДС
самоиндукции еL.
По закону Ленца она препятствует
изменению тока. ЭДС самоиндукции:
,
L
[Гн].
(2.3)
Рисунок 2.1 - Обозначение индуктивного элемента в схемах
Падение напряжения на индуктивности :
(2.4)
противоположно наведенной ЭДС. Условились положительное направление ЭДС самоиндукции брать совпадающим с положительным направлением тока, который наводит эту ЭДС.
Мгновенная мощность индуктивного элемента:
.
(2.5)
Если в течение некоторого интервала времени мгновенное значение тока положительно (i>0) и возрастающее (di/dt>0), то напряжение (uL>0) также положительно и мощность (pL>0), т.е. энергия электрического тока переходит в энергию магнитного поля.
Если (i>0), но убывающее (di/dt<0), тогда uL<0, pL<0, т.е. энергия из магнитного поля возвращается обратно. В индуктивном элементе имеет место обмен энергией между источником и магнитным полем
13. Ёмкостный элемент характеризует влияние изменяющегося электрического поля элементов цепи. На емкостном сопротивлении происходит преобразование электрического тока в энергию электрического поля и наоборот. Поэтому называется реактивным. Ёмкостный элемент с ёмкостью С учитывает энергию электрического поля:
.
(2.6)
Для ёмкостного элемента:
,
,
С [Ф]
(2.7)
Рисунок 2.2 - Обозначение ёмкостного элемента в схемах
Если напряжение uc возрастает (duc/dt>0), то ток положителен (i>0), заряд и энергия электрического поля:
(2.8)
возрастают, т.е. энергия электрического тока передаётся электрическому полю, когда uc убывает, энергия электрического поля возвращается в электрическую цепь.
Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению
C = Q / UC.
С учетом соотношения
i = dQ / dt
получаем формулу связи тока с напряжением
i = C · duC / dt.
Для удобства ее интегрируют и получают
(2.12)
uC = 1 / C · ∫ i dt.
Это соотношение является аналогом закона Ома для емкости.
Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.
Единицей измерения емкости является фарада:
1Ф = 1Кл / 1В = 1Кулон / 1Вольт.
Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0,7 Ф. Поэтому чаще всего используют дробные значения
1 пФ = 10–12 Ф, (пФ – пикофарада); 1 нФ = 10–9 Ф, (нФ – нанофарада); 1 мкФ = 10–6 Ф, (мкФ – микрофарада).
Условным обозначением емкости является символ