
- •4.Пара сил
- •Условия равновесия пар сил.
- •5.Законы Кулона
- •6.Скорости и ускорения точек тела при вращении.
- •11.Моменты инерции
- •12.Ускорение точки
- •1. Координатный способ задания движения
- •2.Ускорение точки при естественном способе задания движения.
- •15.Теорема об изменении кинетической энергии материальной точки.
- •Элементарный и полный импульс силы.
- •19. Сложение пар сил. Условие равновесия сил.
- •20.Динамические дифференциальные уравнения относительно движения материальной точки. Динамическая теорема Кориолиса
- •21.Разложение плоского движения твердого тела на поступательное и вращательное движение. Угловая скорость и угловое ускорение тела при плоском движении
- •22.Зависимость между моментами силы относительно оси и относительно любой очки лежащей на оси
- •23. Теорема о моменте равнодействующей силы (вариньона)
- •24. Построение и вычисление ускорения кариолиса
- •25. Аксиомы классической механики
- •26, Условия равновесия системы
- •Скорость точки
- •Нахождение скорости при естественном способе задания движения.
- •28. Скорость точки при векторном способе задания движения.
- •Определение скорости при координатном способе задания движения.
- •Нахождение скорости при естественном способе задания движения.
- •29. Две основные задачи динамики точки:
- •30. Кинетическая энергия системы.
- •31 Кинетическая энергия твердого тела.
- •33 . Дифференциальные уравнения сферического и свободного движений твердого тела
- •35) Условия равновесия в геометрической и аналитической формах.
- •Условия равновесия для частных случаев произвольной системы с ил в аналитической форме.
- •39) Теорема о скоростях точек плоской фигуры.
- •44)Приведение системы сходящихся сил к равнодействующей
- •Условия равновесия системы сходящихся сил
- •46.Поступательное движение твердого тела.
- •47.Дифференциальные уравнения движения материальной точки.
- •48.Теорема об изменении количества изменения точки
21.Разложение плоского движения твердого тела на поступательное и вращательное движение. Угловая скорость и угловое ускорение тела при плоском движении
Плоским движением твердого тела называется такое его движение, при котором каждая его точка все время движется в одной и той же плоскости
Теорема. Любое движение твердого тела, в том числе и движение плоской фигуры в ее плоскости, бесчисленным множеством способов можно разложить на два движения, одно из которых переносное, а другое — относительное.
В частности, движение плоской фигуры в ее плоскости относительно системы , расположенной в той же плоскости, можно разложить на переносное и относительное движения следующим образом. Примем за переносное движение фигуры ее движение вместе с поступательно движущейся системой координат , начало которой скреплено с точкой О фигуры, принятой за полюс. Тогда относительное движение фигуры будет по отношению к подвижной системе координат вращением вокруг подвижной оси, перпендикулярной плоской фигуре и проходящей через выбранный полюс.
Для доказательства этого достаточно показать, что плоскую фигуру в ее плоскости из одного положения в любое другое можно перевести двумя перемещениями — поступательнымперемещением в плоскости фигуры вместе с каким —либо полюсом и поворотом в той же плоскости вокруг этого полюса.
Скорость любой точки тела в плоском движении равна векторной или геометрической сумме скорости полюса в поступательном движении тела совместно с полюсом и скорости вращения точки вокруг полюса во вращательном движении тела вокруг полюса:
где
VB - скорость точки, VA - скорость полюса,
VBA - скорость вращения точки вокруг
полюса. Причем:
где ,ω - модуль угловой скорости и величина вектора угловой скорости; AB - расстояние между точкой и полюсом, равное радиусу вращения точки вокруг полюса.
Отметим, что угловая скорость не зависит от выбора полюса, и поэтому при использовании теоремы для решения задач за полюс может быть выбрана любая точка тела, скорость которой известна в неподвижной системе координат.
Ускорение любой точки тела в плоском движении равно геометрической сумме ускорения точки тела в поступательном движении совместно с полюсом и ускорения вращения точки вокруг полюса во вращательном движении тела вокруг полюса.
Дифференцируя по времени выражение (2), получаем:
В последнем выражении вектор углового ускорения тела ε направлен по оси вращения тела, совпадающей с осями Az* и Az1 , так как при плоском движении вектор ω не изменяет своего направления в пространстве, двигаясь параллельно самому себе. То есть распределение ускорений в базовой системе координат такое же, как и при вращении тела вокруг неподвижной оси.
Очевидно,
что aA является ускорением полюса или
ускорением поступательного движения
базовой системы координат и тела
совместно с полюсом. Согласно векторным
формулам для ускорений точек тела при
вращательномдвижениию вектор касательного
ускорение вращения вокруг полюса равен:
Отметим, что теорема о сложении ускорений точек тела в плоском движении часто используется для решения задач. Ускорения могут быть найдены в двух основных случаях, когда: 1) расстояние от полюса до мгновенного центра скоростей в процессе движения остается постоянной величиной; 2) ускорение одной точки тела (полюса) и траектория второй точки тела известны.