
- •4.Пара сил
- •Условия равновесия пар сил.
- •5.Законы Кулона
- •6.Скорости и ускорения точек тела при вращении.
- •11.Моменты инерции
- •12.Ускорение точки
- •1. Координатный способ задания движения
- •2.Ускорение точки при естественном способе задания движения.
- •15.Теорема об изменении кинетической энергии материальной точки.
- •Элементарный и полный импульс силы.
- •19. Сложение пар сил. Условие равновесия сил.
- •20.Динамические дифференциальные уравнения относительно движения материальной точки. Динамическая теорема Кориолиса
- •21.Разложение плоского движения твердого тела на поступательное и вращательное движение. Угловая скорость и угловое ускорение тела при плоском движении
- •22.Зависимость между моментами силы относительно оси и относительно любой очки лежащей на оси
- •23. Теорема о моменте равнодействующей силы (вариньона)
- •24. Построение и вычисление ускорения кариолиса
- •25. Аксиомы классической механики
- •26, Условия равновесия системы
- •Скорость точки
- •Нахождение скорости при естественном способе задания движения.
- •28. Скорость точки при векторном способе задания движения.
- •Определение скорости при координатном способе задания движения.
- •Нахождение скорости при естественном способе задания движения.
- •29. Две основные задачи динамики точки:
- •30. Кинетическая энергия системы.
- •31 Кинетическая энергия твердого тела.
- •33 . Дифференциальные уравнения сферического и свободного движений твердого тела
- •35) Условия равновесия в геометрической и аналитической формах.
- •Условия равновесия для частных случаев произвольной системы с ил в аналитической форме.
- •39) Теорема о скоростях точек плоской фигуры.
- •44)Приведение системы сходящихся сил к равнодействующей
- •Условия равновесия системы сходящихся сил
- •46.Поступательное движение твердого тела.
- •47.Дифференциальные уравнения движения материальной точки.
- •48.Теорема об изменении количества изменения точки
15.Теорема об изменении кинетической энергии материальной точки.
Для доказательства теоремы запишем дифференциальное уравнение движения точки в виде mdV / dt = F. Умножая обе части уравнения скалярно на вектор элементарного действительного перемещения точки dr и учитывая, что dr / dt = V, имеем
|
(1) |
Зная, что F - равнодействующая сил, приложенных к точке, обозначим δA скалярное произведение в правой части и назовем его элементарной работой сил, приложенных к точке:
|
(2) |
Находя дифференциал от mV2 / 2, имеем
Подставляя последнее выражение и выражение (2) в уравнение (1), получаем математическую запись теоремы в дифференциальной форме:
|
(3) |
Половину произведения массы точки на квадрат ее скорости под знаком дифференциала в левой части уравнения (3) называют кинетической энергией точки.
Это замечание позволяет по математической записи сформулировать теорему об изменении кинетической энергии материальной точки в дифференциальной форме: дифференциал от кинетической энергии материальной точки равен элементарной работе сил, приложенных к точке.
Отметим, что кинетическая энергия - это еще одна, но уже скалярная, мера движения материальной точки, что дает ей определенные преимущества перед векторными мерами движения - количеством движения и моментом количества движения. В системе СИ единицей измерения кинетической энергии является джоуль, 1 Дж = кг·(м2/с2) = (кг·м/c2)·м = 1 Н·м.
Предположим, что при переходе точки из начального положения M0 в конечное (или текущее) положение M ее скорость изменилась от начального значения V0 до текущего (или конечного) значения V, и при этих предположениях проинтегрируем выражение (3). Тогда
Интеграл в правой части этого выражения обозначим A и назовем полной работой или просто работой сил, приложенных к материальной точке:
|
(4) |
Учитывая введенное обозначение, получаем математическую запись теоремы об изменении кинетической энергии материальной точки в интегральной форме:
mV2 / 2 - mV02 / 2 = A |
(5) |
то есть: изменение кинетической энергии материальной точки при ее переходе из начального положения в текущее (или конечное) положение равна работе сил, приложенных к точке, совершенной при этом переходе.
Теорема в интегральной форме в основном применяется, когда интеграл в правой части можно взять и вычислить полную работу сил. Тогда можно найти соотношение между перемещением и скоростью материальной точки. Теорема в дифференциальной форме удобна для составления дифференциальных уравнений движения материальной точки.
При практическом применении теоремы вычисление кинетической энергии точки обычно не вызывает трудностей, нужно только помнить о том, что ее нужно вычислять в абсолютном движении. Основной интерес и трудности представляют выражение элементарной работы и вычисление работы.
16.Количество движения точки
Количеством
движения
материальной точки
называется вектор, равный произведению
массы точки
на ее скорость
.
Количество движения точки в физике часто называют импульсом материальной точки.
Проекции количества движения точки на прямоугольные декартовы оси координат равны:
,
,
Единицей
измерения количества движения в СИ
является –