Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тер мех..doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.79 Mб
Скачать

44)Приведение системы сходящихся сил к равнодействующей

Силы называются сходящимися, если линии действия всех сил, составляющих систему, пересекаются в одной точке. Докажем теорему: Система сходящихся сил эквивалентна одной силе (равнодейству­ющей), которая равна сумме всех этих сил и проходит через точку пересечения их линий действия. Пусть задана система сходящихся сил F1, F2, F3, ..., Fn, при­ложенных к абсолютно твердому телу (рис. 2.1, а). Перенесем точки приложения сил по линиям их действия в точку пересечения этих линий (21, б). Получили сист сил, прил к одной точке. Она эквивалентна заданной. Сложим F1 и F2, получим их равнодействующую: R2=F1+F2. Сложим R2 с F3: R3=R2+F3=F1+F2+F3. Сложим F1+F2+F3+…+Fn=Rn=R=åFi. Ч.т.д. Вместо параллелограммов можно построить силовой многоугольник. Пусть система состоит из 4 сил (рис 2.2.). От конца вектора F1 отложим вектор F2. Вектор, соединяющий начало О и конец вектора F2, будет вектором R2. Далее отложим вектор F3 помещая его начало в конце вектора F2. Тогда мы получим вектор R8, идущий от точки О к концу вектора F3. Точно так же добавим вектор F4; при этом получим, что вектор, идущий от начала первого вектора F1 к концу вектора F4, является равнодействующей R. Такой пространственный многоугольник называется силовым. Если конец последней силы не совпадает с началом  первой силы, то силовой многоугольник назразомкнутый. Если для нах равнодействующей исп прав геометр, то этот способ наз геометрическим.

Больше пользуются аналитическим способом для определения равнодействующей. Проек­ция суммы векторов на некоторую ось равна сумме проекций на ту же ось слагаемых векторов, получим Rx=åFkx=F1x+F2x+…+Fnx; Ry=åFky=F1y+F2y+…+Fny; Rz=åFkz=F1z+F2z+…+Fnz; где Fkx, Fky, Fkz– проекции силы Fk на оси, а Rx, Ry, Rz– проекции равнодействующей на те же оси. Проекции равнодействующей системы сходящихся сил на координатные оси равны алгебраическим суммам проекций этих сил на соответствующие оси. Модуль равнодействующей R равен: R=(Rx2+Ry2+Rz2)1/2. Направляющие косинусы равны: cos(x,R)=Rx/R, cos(y,R)=Ry/R, cos(z,R)=Rz/R. Если силы распол в пл-ти то всё аналогично, отсутствует ось Z.

Условия равновесия системы сходящихся сил

(F1, F2, ...,Fn)~R => для равновесия тела, находящегося под действием системы сходящихся сил, необходимо и достаточно, чтобы их равнодействующая равнялась нулю: R = 0. Следовательно, в силовом многоугольнике уравновешенной системы сходящихся сил конец последней силы должен совпадать с началом первой силы; в этом случае говорят, что силовой многоугольник замк­нут (рис. 2.3). Это условие исполь­зуется при графическом решении задач для плоских систем сил. Векторное равенство R=0 эквивалентно трем скалярным равен­ствам: Rx=åFkx=F1x+F2x+…+Fnx=0; Ry=åFky=F1y+F2y+…+Fny=0; Rz=åFkz=F1z+F2z+…+Fnz=0; где Fkx, Fky, Fkz– проекции силы Fk на оси, а Rx, Ry, Rz– проекции равнодействующей на те же оси. Т. е. для равновесия сходящейся системы сил необходимо и достаточно равенства нулю алгебраических сумм проекций всех сил данной си­стемы на каждую из координатных осей. Для плоской системы сил пропадает условие, связанное с осью Z. Условия равновесия позволяют проконтролировать, нахо­дится ли в равновесии заданная система сил.

45)    Поступательным называется такое движение твердого тела, при котором любая прямая линия, проведенная в теле, перемещается, оставаясь параллельной своему начальному положению.       При поступательном движении:

  • все точки тела описывают одинаковые траектории;

  • скорости  всех точек тела одинаковые в данный момент времени  ;

  • ускорение всех точек тела одинаковые в данный момент времени  ;

    Поступательное движение твердого тела полностью определяется движением любой одной его точки, т.е. кинематика поступательного движения может быть сведена к кинематике точки.

Теорема.При поступательном движении твердого тела все его точки дви­жутся по одинаковым и параллельным траекториям и имеют в каждый данный момент времени равные по модулю и направлению скорости и ускорения.

Доказательство. Для доказательства теоремы рассмотрим движение отрезка прямой , проведенного в теле, с овершающем поступательное движение (рис. 2.10). Из определения поступа­тельного движения следует, что в каждый данный момент времени отрезок , занимающий последовательно положения , , и т.д., остается параллельным своему первоначальному положению. Учиты­вая это и то что , делаем вывод, что ломаные линии и параллельны и при на­ложении совпадут всеми своими точками. При бесконечном уменьшении про­межутков времени между рассматриваемыми по­ложениями отрезка мы видим, что точка и точка описывают одинаковые кривые, т. е. кривые, совпадаю­щие при наложении.

Для доказательства второй части теоремы заметим, что . (2.27)

Возьмем производные по времени от левой и правой частей .Так как , то .

Тогда ;

;

;

.