
2.1 Гидромотор
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2:
1 - вал; 2 - манжета; 3 - крышка; 4, 9 - корпус; 5, 16 - подшипник;
6 - радиально упорный подшипник; 7 - барабан; 8 - поводок; 10 - ротор;
11 - пружины; 12 - дренажное отверстие; 13 - распределительное устройство;
14 - полукольцевые пазы; 15 - отверстие напорное; 17 - поршни; 18 - шпонка; 19 - толкатель
Гидромотор (гидравлический мотор) — гидравлический двигатель, предназначенный для сообщения выходному звену вращательного движения на неограниченный угол поворота.
Конструкция и принцип работы
Конструкции гидромоторов аналогичны конструкциям соответствующих насосов. Некоторые конструктивные отличия связаны с обратным потоком мощности через гидромашину, работающую в режиме гидромотора. В отличие от насосов, в гидромоторе на вход подаётся рабочая жидкость под давлением, а на выходе снимается с вала крутящий момент.
Наибольшее распространение получили шестерённые, пластинчатые, аксиально-плунжерные и радиально-плунжерные гидромоторы.
Управление движением вала гидромотора осуществляется с помощью гидрораспределителя, либо с помощью средств регулирования гидропривода.
Область применения
Аксиально-плунжерные гидромоторы используются в тех случаях, когда необходимо получить высокие скорости вращения вала, а радиально-плунжерные — когда необходимы небольшие скорости вращения при большом создаваемом моменте вращения. Например, поворот башни некоторых автомобильных кранов осуществляют радиально-плунжерные гидромоторы. В станочных гидроприводах широко распространены пластинчатые гидромоторы. Шестерённые гидромоторы используются в несложных гидросистемах с невысокими требованиями к неравномерности вращения вала гидромотора.
Преимущества
Гидромоторы применяются в технике значительно реже электромоторов, однако в ряде случаев они имеют существенные преимущества перед последними. Гидромоторы меньше в среднем в 3 раза по размерам и в 15 раз[1] по массе, чем электромоторы соответствующей мощности. Диапазон регулирования частоты вращения гидромотора существенно шире: например, он может составлять от 2500 об/мин до 30-40 об/мин, а в некоторых случаях, у гидромоторов специального исполнения, доходит до 1-4 об/мин и меньше[2]. Время запуска и разгона гидромотора составляет доли секунды, что для электромоторов большой мощности (несколько киловат) недостижимо. Для гидромотора не представляют опасности частые включения-выключения, остановки и реверс. Закон движения вала гидромотора может легко изменяться путём использования средств регулирования гидропривода.
2.2 Землесосный снаряд
При гидромеханизации земляных работ используются гидромониторные установки, землесосы (грунтонасосы), землесосные снаряды и др.
Гидромониторная установка: а — гидромонитор с гидравлическим приводом; б — размыв грунта встречным забоем; в — размыв грунта попутным забоем; 1 — пульт управления; 2 — шланги; 3 — гидроцилиндры управления; 4 — ствол; 5 — насадка
Гидромониторная установка включает насосную станцию с высоконапорными центробежными насосами, магистральные и подводящие водоводы, гидромониторы со сменными рабочими наконечниками-насадками. Вода с большим напором подается к гидромониторам, где формируется компактная, обладающая высокой кинети-
ческой энергией струя, под воздействием которой размывается грунт в забое. Образующаяся пульпа землесосом перекачивается в зону намыва. Землесос представляет собой центробежный насос, имеющий ряд конструктивных особенностей, позволяющих перекачивать жидкую массу с твердыми включениями в виде гравия и камней. Гидромониторные установки используются при вертикальной планировке площадок, разработке котлованов, траншей, карьеров и других выемок, расположенных на суше.
Землесосный снаряд — плавучая установка, оборудованная мощным землесосом, рабочим органом в виде всасывающей трубы с рыхлителем на нижнем конце и механизмами управления. Всасывающая труба подвешена на стреле и может изменять глубину погружения в зависимости от условий работы. Пульпа, образующаяся в результате всасывания грунта из подводного забоя, направляется к месту намыва по пульпопроводу, смонтированному в пределах водоема на понтонах. На берегу укладка пульпопроводов и намыв осуществляются так же, как и при гидромониторной разработке. Всасывание и напор в трубопроводах, необходимый для движения пульпы, обеспечиваются землесосом (рис. 4.14).
При гидромеханическом способе разработки грунта используют также бульдозеры и грейдеры для устройства обвалования карт намыва и самоходные стреловые краны для монтажа и демонтажа оборудования, водоводов и пульпопроводов. Наибольшая эффективность достигается, когда разрабатываемый земснарядами грунт используется для намыва площадок под застройку городских территорий, которые в естественном состоянии неудобны для строительства; поймы рек, овраги, низины, заполняемые паводками и т. д. Земленосные снаряды применяются при разработке котлованов больших объемов, углублении дна рек и водоемов, устройстве набережных, плотин, дамб, искусственных водоемов и др.
Достоинством гидромеханического способа является возможность полной механизации и автоматизации основных процессов размываемое сооружение работки, транспортирования и укладки грунта, высокий уровень производительности труда при сравнительно низкой себестоимости. Однако этот способ целесообразно применять при легкоразмывае-мых грунтах, обильных источниках водоснабжения и дешевой электроэнергии.
Разработка грунта землесосным снарядом: а — схема землесосного снаряда; б — схема работы; 1 — грунтозаборное устройство; 2 — напорный пульпопровод; 3 — папильонажные сваи; 4 — плавучий пульпопровод; 5 — грунтовый насос; 6 — корпус; 7 — всасывающий трубопровод; 8 — береговой пульпопровод;
Взрывной способ разработки грунта заключается в разрушении земляного массива и перемещении разрушенной породы за счет энергии взрыва. Он применяется при устройстве котлованов, траншей, каналов, плотин, рыхлении скальных и мерзлых грунтов, уплотнении грунтов, устройстве набивных свай и др. При подготовке площадки для строительства или реконструкции объекта взрывной способ используется для разрушения зданий и сооружений или отдельных конструкций, намеченных к сносу, крупных камней, при корчевке пней и т. д.
Взрывом называется мгновенное разложение химических веществ с образованием большого количества тепла и газов. Из взрывчатых веществ (ВВ) в строительстве наибольшее распространение получили тротил, амониты, оксиликвиты, тол, динамит. В зависимости от
вида В В, величины заряда и его расположения действие взрыва проявляется в уплотнении грунта вокруг заряда (камуфлет), дроблении (рыхлении) породы и выбросе грунта с образованием воронки (горна) трапецеидальной формы (рис. 4.15). Величина заряда В В определяется расчетом.
Для взрыва ВВ применяют следующие средства взрывания: огнепроводный и детонирующие шнуры, капсюли-детонаторы и др. В зависимости от используемых средств различают огневой, электрический и способ взрывания с помощью детонации. Выбор способа определяется количеством одновременно взрываемых зарядов, их величиной и принятым методом взрывных работ. В зависимости от цели взрыва применяются методы накладных зарядов, располагаемых на поверхности взрываемого объекта, или внутренних (глубинных) зарядов, которые могут быть размещены в шпурах, скважинах, рукавах и камерах и др. Шпуры и скважины разрабатывают, используя буровое оборудование (см. гл. 5), а рукава и минные камеры — способами подземных выработок.
Характер действия взрыва:
а — камуфлет; б — рыхление; в — выброс; 1 — заряд BB; 2 — зона разрушения; 3 — зона уплотнения
Накладные заряды применяются при подготовке территории, для разрушения строительных конструкций, крупных камней (валунов), корчевки пней и т.п. Расход ВВ при этом методе в 8—10 раз больше, чем при внутренних зарядах.
Метод шпуровых зарядов используется для разрушения предназначенных к сносу зданий и сооружений, рыхления и разработки скальных и мерзлых грунтов в наземных выемках (котлованы, траншеи) и подземных выработках (тоннели, штольни) при небольших объемах одновременно взрываемой: породы (рис. 4.16).
Схема расположения шпуровых зарядов:
а — разрез; 6 — план; 1 — забивка; 2 — заряды
Скважинные заряды применяются при необходимости произвести взрыв на сброс или рыхление большого массива породы.
Метод камерных зарядов применяется при массовом взрыве на выброс большого объема грунта. В зависимости от ширины поперечного профиля выемки заряды ВВ располагают в один или несколько рядов, взрываемых в определенном порядке, что обеспечивает направленный выброс грунта
Схемы направленных взрывов:
а — при устройстве выемки; б — при устройстве насыпи; 1 — заряды ВВ; 2 — направления перемещения взорванного грунта; 3— проектная линия верха насыпи; I, II, III — очередность взрывания зарядов
Для рыхления мерзлых грунтов применяются щелевые заряды.
Взрывной способ ведения земляных работ сопряжен с повышенной опасностью, поэтому необходимо строго соблюдать «Единые правила безопасности при взрывных работах».